These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27600843)

  • 1. The Role of the Prefrontal Cortex in Action Perception.
    Raos V; Savaki HE
    Cereb Cortex; 2017 Oct; 27(10):4677-4690. PubMed ID: 27600843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perception of actions performed by external agents presupposes knowledge about the relationship between action and effect.
    Raos V; Savaki HE
    Neuroimage; 2016 May; 132():261-273. PubMed ID: 26892857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the superior temporal cortex in action execution and action observation.
    Kilintari M; Raos V; Savaki HE
    J Neurosci; 2014 Jul; 34(27):8999-9011. PubMed ID: 24990920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional imaging of the parietal cortex during action execution and observation.
    Evangeliou MN; Raos V; Galletti C; Savaki HE
    Cereb Cortex; 2009 Mar; 19(3):624-39. PubMed ID: 18641087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mental simulation of action in the service of action perception.
    Raos V; Evangeliou MN; Savaki HE
    J Neurosci; 2007 Nov; 27(46):12675-83. PubMed ID: 18003847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans.
    Babiloni C; Del Percio C; Vecchio F; Sebastiano F; Di Gennaro G; Quarato PP; Morace R; Pavone L; Soricelli A; Noce G; Esposito V; Rossini PM; Gallese V; Mirabella G
    Clin Neurophysiol; 2016 Jan; 127(1):641-654. PubMed ID: 26038115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observed, Executed, and Imagined Action Representations can be Decoded From Ventral and Dorsal Areas.
    Filimon F; Rieth CA; Sereno MI; Cottrell GW
    Cereb Cortex; 2015 Sep; 25(9):3144-58. PubMed ID: 24862848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontal cortical areas of the monkey brain engaged in reaching behavior: a (14)C-deoxyglucose imaging study.
    Gregoriou GG; Luppino G; Matelli M; Savaki HE
    Neuroimage; 2005 Aug; 27(2):442-64. PubMed ID: 16061153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viewing a forelimb induces widespread cortical activations.
    Raos V; Kilintari M; Savaki HE
    Neuroimage; 2014 Apr; 89():122-42. PubMed ID: 24361756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grasping in the dark activates early visual cortices.
    Kilintari M; Raos V; Savaki HE
    Cereb Cortex; 2011 Apr; 21(4):949-63. PubMed ID: 20833697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radioactive 2-deoxy-D-glucose incorporation into the prefrontal and premotor cortex of the monkey performing a forelimb movement.
    Matsunami K; Kageyama T; Kubota K
    Neurosci Lett; 1981 Oct; 26(1):37-41. PubMed ID: 7290536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional specialization of areas along the anterior-posterior axis of the primate prefrontal cortex.
    Riley MR; Qi XL; Constantinidis C
    Cereb Cortex; 2017 Jul; 27(7):3683-3697. PubMed ID: 27371761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe.
    Cavada C; Goldman-Rakic PS
    J Comp Neurol; 1989 Sep; 287(4):422-45. PubMed ID: 2477406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action semantics and movement characteristics engage distinct processing streams during the observation of tool use.
    Hoeren M; Kaller CP; Glauche V; Vry MS; Rijntjes M; Hamzei F; Weiller C
    Exp Brain Res; 2013 Aug; 229(2):243-60. PubMed ID: 23811729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal activity in the primate prefrontal cortex in the process of motor selection based on two behavioral rules.
    Hoshi E; Shima K; Tanji J
    J Neurophysiol; 2000 Apr; 83(4):2355-73. PubMed ID: 10758139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and temporal dissociation in prefrontal cortex during action execution.
    Hunter MD; Green RD; Wilkinson ID; Spence SA
    Neuroimage; 2004 Nov; 23(3):1186-91. PubMed ID: 15528118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task.
    Wallis JD; Dias R; Robbins TW; Roberts AC
    Eur J Neurosci; 2001 May; 13(9):1797-808. PubMed ID: 11359531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity in prefrontal cortex during dynamic selection of action sequences.
    Averbeck BB; Sohn JW; Lee D
    Nat Neurosci; 2006 Feb; 9(2):276-82. PubMed ID: 16429134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys.
    Yeterian EH; Pandya DN
    J Comp Neurol; 1991 Oct; 312(1):43-67. PubMed ID: 1744243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The selection of intended actions and the observation of others' actions: a time-resolved fMRI study.
    Cunnington R; Windischberger C; Robinson S; Moser E
    Neuroimage; 2006 Feb; 29(4):1294-302. PubMed ID: 16246592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.