These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27600996)

  • 1. Innovating a Nonconventional Yeast Platform for Producing Shikimate as the Building Block of High-Value Aromatics.
    Gao M; Cao M; Suástegui M; Walker J; Rodriguez Quiroz N; Wu Y; Tribby D; Okerlund A; Stanley L; Shanks JV; Shao Z
    ACS Synth Biol; 2017 Jan; 6(1):29-38. PubMed ID: 27600996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories.
    Zhao Y; Yao Z; Ploessl D; Ghosh S; Monti M; Schindler D; Gao M; Cai Y; Qiao M; Yang C; Cao M; Shao Z
    ACS Synth Biol; 2020 Jul; 9(7):1736-1752. PubMed ID: 32396718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites.
    Suástegui M; Shao Z
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1611-1624. PubMed ID: 27581441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway.
    Li Z; Wang H; Ding D; Liu Y; Fang H; Chang Z; Chen T; Zhang D
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):525-535. PubMed ID: 32642925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel technologies combined with traditional metabolic engineering strategies facilitate the construction of shikimate-producing Escherichia coli.
    Gu P; Fan X; Liang Q; Qi Q; Li Q
    Microb Cell Fact; 2017 Sep; 16(1):167. PubMed ID: 28962609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.
    Lee JH; Wendisch VF
    J Biotechnol; 2017 Sep; 257():211-221. PubMed ID: 27871872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae.
    Suástegui M; Guo W; Feng X; Shao Z
    Biotechnol Bioeng; 2016 Dec; 113(12):2676-2685. PubMed ID: 27317047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering.
    Cao M; Gao M; Lopez-Garcia CL; Wu Y; Seetharam AS; Severin AJ; Shao Z
    ACS Synth Biol; 2017 Aug; 6(8):1545-1553. PubMed ID: 28391682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread effect of N-acetyl-D-glucosamine assimilation on the metabolisms of amino acids, purines, and pyrimidines in Scheffersomyces stipitis.
    Inokuma K; Matsuda M; Sasaki D; Hasunuma T; Kondo A
    Microb Cell Fact; 2018 Sep; 17(1):153. PubMed ID: 30253773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.
    Rodriguez A; Kildegaard KR; Li M; Borodina I; Nielsen J
    Metab Eng; 2015 Sep; 31():181-8. PubMed ID: 26292030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering strategies for enhanced shikimate biosynthesis: current scenario and future developments.
    Bilal M; Wang S; Iqbal HMN; Zhao Y; Hu H; Wang W; Zhang X
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7759-7773. PubMed ID: 30014168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Microbial Production of Aromatic Chemicals and Derivatives.
    Noda S; Kondo A
    Trends Biotechnol; 2017 Aug; 35(8):785-796. PubMed ID: 28645530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Acanthamoeba shikimate pathway has a unique molecular arrangement and is essential for aromatic amino acid biosynthesis.
    Henriquez FL; Campbell SJ; Sundararaj BK; Cano A; Muench SP; Roberts CW
    Protist; 2015 Feb; 166(1):93-105. PubMed ID: 25576842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate.
    Fujiwara R; Noda S; Tanaka T; Kondo A
    Nat Commun; 2020 Jan; 11(1):279. PubMed ID: 31937786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli.
    Jiang M; Zhang H
    Curr Opin Biotechnol; 2016 Dec; 42():1-6. PubMed ID: 26921705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
    Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production.
    Gao M; Zhao Y; Yao Z; Su Q; Van Beek P; Shao Z
    Nat Commun; 2023 Nov; 14(1):7797. PubMed ID: 38016984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Engineering of Shikimic Acid Biosynthesis Pathway for the Production of Shikimic Acid and Its Branched Products in Microorganisms: Advances and Prospects.
    Wu S; Chen W; Lu S; Zhang H; Yin L
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Mediated Genome Editing and Gene Repression in Scheffersomyces stipitis.
    Cao M; Gao M; Ploessl D; Song C; Shao Z
    Biotechnol J; 2018 Sep; 13(9):e1700598. PubMed ID: 29917323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.