These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 2760111)

  • 1. Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kD cytoskeletal protein, determined at 22 A by low dose electron microscopy and x-ray diffraction to 12.5 A.
    Mitra AK; McCarthy MP; Stroud RM
    J Cell Biol; 1989 Aug; 109(2):755-74. PubMed ID: 2760111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between acetylcholine receptor function and structural properties of membranes.
    Fong TM; McNamee MG
    Biochemistry; 1986 Feb; 25(4):830-40. PubMed ID: 3008814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asynchronous assembly of the acetylcholine receptor and of the 43-kD nu1 protein in the postsynaptic membrane of developing Torpedo marmorata electrocyte.
    Kordeli E; Cartaud J; Nghiêm HO; Devillers-Thiéry A; Changeux JP
    J Cell Biol; 1989 Jan; 108(1):127-39. PubMed ID: 2642909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic components of acetylcholine receptor clusters of cultured rat myotubes: the 58-kD protein.
    Bloch RJ; Resneck WG; O'Neill A; Strong J; Pumplin DW
    J Cell Biol; 1991 Oct; 115(2):435-46. PubMed ID: 1918149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical and immunological studies of the N-terminal domain of the Torpedo acetylcholine receptor alpha-subunit expressed in Escherichia coli.
    Alexeev T; Krivoshein A; Shevalier A; Kudelina I; Telyakova O; Vincent A; Utkin Y; Hucho F; Tsetlin V
    Eur J Biochem; 1999 Jan; 259(1-2):310-9. PubMed ID: 9914508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a cytoplasmic region of the Torpedo nicotinic acetylcholine receptor alpha-subunit by epitope mapping.
    Pedersen SE; Bridgman PC; Sharp SD; Cohen JB
    J Biol Chem; 1990 Jan; 265(1):569-81. PubMed ID: 1688436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosslinking of proteins in acetylcholine receptor-rich membranes from Torpedo californica: relation of 43-kD protein and Torpedo dystrophin to acetylcholine receptor.
    Shoji H; Nomoto H; Ohta M; Hayashi K
    Biochem Int; 1992 Dec; 28(6):1071-7. PubMed ID: 1290462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction.
    Toyoshima C; Unwin N
    J Cell Biol; 1990 Dec; 111(6 Pt 1):2623-35. PubMed ID: 2277076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clustering of the acetylcholine receptor by the 43-kD protein: involvement of the zinc finger domain.
    Scotland PB; Colledge M; Melnikova I; Dai Z; Froehner SC
    J Cell Biol; 1993 Nov; 123(3):719-28. PubMed ID: 8227134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intactness and orientation of acetylcholine receptor-rich membrane from Torpedo californica electric tissue.
    Czajkowski C; DiPaola M; Bodkin M; Salazar-Jimenez G; Holtzman E; Karlin A
    Arch Biochem Biophys; 1989 Aug; 272(2):412-20. PubMed ID: 2751309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy.
    Zingsheim HP; Neugebauer DC; Frank J; Hänicke W; Barrantes FJ
    EMBO J; 1982; 1(5):541-7. PubMed ID: 7188351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered patterns of N-linked glycosylation of the Torpedo acetylcholine receptor expressed in Xenopus oocytes.
    Buller AL; White MM
    J Membr Biol; 1990 May; 115(2):179-89. PubMed ID: 2355395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid-detergent matrices.
    Paas Y; Cartaud J; Recouvreur M; Grailhe R; Dufresne V; Pebay-Peyroula E; Landau EM; Changeux JP
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11309-14. PubMed ID: 13679581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of dystrophin relative to acetylcholine receptor domains in electric tissue and adult and cultured skeletal muscle.
    Sealock R; Butler MH; Kramarcy NR; Gao KX; Murnane AA; Douville K; Froehner SC
    J Cell Biol; 1991 Jun; 113(5):1133-44. PubMed ID: 2040646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting of acetylcholine receptor and 43 kDa rapsyn to the postsynaptic membrane in Torpedo marmorata electrocyte.
    Bignami F; Camus G; Marchand S; Bailly L; Stetzkowski-Marden F; Cartaud J
    J Physiol Paris; 1998; 92(3-4):177-81. PubMed ID: 9789804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetry and dimensions of membrane-bound nicotinic acetylcholine receptors from Torpedo californica electric tissue: rapid rearrangement to two-dimensional ordered lattices.
    Giersig M; Kunath W; Pribilla I; Bandini G; Hucho F
    Membr Biochem; 1989; 8(2):81-93. PubMed ID: 2634235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location of subunits within the acetylcholine receptor by electron image analysis of tubular crystals from Torpedo marmorata.
    Kubalek E; Ralston S; Lindstrom J; Unwin N
    J Cell Biol; 1987 Jul; 105(1):9-18. PubMed ID: 3611197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering and immobilization of acetylcholine receptors by the 43-kD protein: a possible role for dystrophin-related protein.
    Phillips WD; Noakes PG; Roberds SL; Campbell KP; Merlie JP
    J Cell Biol; 1993 Nov; 123(3):729-40. PubMed ID: 8227135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation increases alpha-bungarotoxin binding to acetylcholine receptor-enriched membrane preparations.
    Carstens ME; Taljaard JJ; Neethling AC
    Mol Cell Biochem; 1983; 56(1):67-71. PubMed ID: 6633517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment.
    Zanello LP; Aztiria E; Antollini S; Barrantes FJ
    Biophys J; 1996 May; 70(5):2155-64. PubMed ID: 9172739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.