These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 27601425)

  • 1. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity.
    Tripathi DK; Shweta ; Singh S; Singh S; Pandey R; Singh VP; Sharma NC; Prasad SM; Dubey NK; Chauhan DK
    Plant Physiol Biochem; 2017 Jan; 110():2-12. PubMed ID: 27601425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.
    Miralles P; Church TL; Harris AT
    Environ Sci Technol; 2012 Sep; 46(17):9224-39. PubMed ID: 22892035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles based on essential metals and their phytotoxicity.
    Ruttkay-Nedecky B; Krystofova O; Nejdl L; Adam V
    J Nanobiotechnology; 2017 Apr; 15(1):33. PubMed ID: 28446250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Eco-toxicological effect of metal-based nanoparticles on plants: Research progress].
    Zhang H; Peng C; Yang JJ; Shi JY
    Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):885-92. PubMed ID: 23755509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism.
    Yan A; Chen Z
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Editorial.
    Peralta-Videa JR; Sahi SV
    Plant Physiol Biochem; 2017 Jan; 110():1. PubMed ID: 28040154
    [No Abstract]   [Full Text] [Related]  

  • 8. Physiological and biochemical response of plants to engineered NMs: Implications on future design.
    de la Rosa G; García-Castañeda C; Vázquez-Núñez E; Alonso-Castro ÁJ; Basurto-Islas G; Mendoza Á; Cruz-Jiménez G; Molina C
    Plant Physiol Biochem; 2017 Jan; 110():226-235. PubMed ID: 27328789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle-based toxicity in perishable vegetable crops: Molecular insights, impact on human health and mitigation strategies for sustainable cultivation.
    Sharma S; Shree B; Aditika ; Sharma A; Irfan M; Kumar P
    Environ Res; 2022 Sep; 212(Pt A):113168. PubMed ID: 35346658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.
    Shahid M; Shamshad S; Rafiq M; Khalid S; Bibi I; Niazi NK; Dumat C; Rashid MI
    Chemosphere; 2017 Jul; 178():513-533. PubMed ID: 28347915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy.
    Fincheira P; Tortella G; Duran N; Seabra AB; Rubilar O
    Crit Rev Biotechnol; 2020 Feb; 40(1):15-30. PubMed ID: 31658818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-based nanotoxicity and detoxification pathways in higher plants.
    Ma C; White JC; Dhankher OP; Xing B
    Environ Sci Technol; 2015 Jun; 49(12):7109-22. PubMed ID: 25974388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Engineered Nanoparticles with the Agri-environment.
    Pradhan S; Mailapalli DR
    J Agric Food Chem; 2017 Sep; 65(38):8279-8294. PubMed ID: 28876911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture.
    Rai PK; Kumar V; Lee S; Raza N; Kim KH; Ok YS; Tsang DCW
    Environ Int; 2018 Oct; 119():1-19. PubMed ID: 29909166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A review of uptake, translocation and phytotoxicity of engineered nanoparticles in plants].
    Yang XP; Zhao FJ
    Huan Jing Ke Xue; 2013 Nov; 34(11):4495-502. PubMed ID: 24455965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting effects of engineered carbon nanotubes on plants: a review.
    Vithanage M; Seneviratne M; Ahmad M; Sarkar B; Ok YS
    Environ Geochem Health; 2017 Dec; 39(6):1421-1439. PubMed ID: 28444473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotoxicity assessment in plants: an updated overview.
    Zafar H; Javed R; Zia M
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):93323-93344. PubMed ID: 37544947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses.
    Song U; Lee S
    Environ Sci Pollut Res Int; 2016 May; 23(9):8539-45. PubMed ID: 26797943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Status and Future Prospects of Semiconductor Quantum Dots in Botany.
    Pang C; Gong Y
    J Agric Food Chem; 2019 Jul; 67(27):7561-7568. PubMed ID: 31246021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.