BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 27601472)

  • 1. O-GlcNAcase Is an RNA Polymerase II Elongation Factor Coupled to Pausing Factors SPT5 and TIF1β.
    Resto M; Kim BH; Fernandez AG; Abraham BJ; Zhao K; Lewis BA
    J Biol Chem; 2016 Oct; 291(43):22703-22713. PubMed ID: 27601472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRIM28 as a novel transcriptional elongation factor.
    Bunch H; Calderwood SK
    BMC Mol Biol; 2015 Aug; 16():14. PubMed ID: 26293668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation.
    Fitz J; Neumann T; Pavri R
    EMBO J; 2018 Apr; 37(8):. PubMed ID: 29514850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation.
    Hartzog GA; Fu J
    Biochim Biophys Acta; 2013 Jan; 1829(1):105-15. PubMed ID: 22982195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair.
    Li W; Giles C; Li S
    Nucleic Acids Res; 2014 Jun; 42(11):7069-83. PubMed ID: 24813444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape.
    Hu S; Peng L; Xu C; Wang Z; Song A; Chen FX
    Mol Cell; 2021 Nov; 81(21):4425-4439.e6. PubMed ID: 34534457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest.
    Crickard JB; Fu J; Reese JC
    J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pausing zone and control of RNA polymerase II elongation by Spt5: Implications for the pause-release model.
    Fong N; Sheridan RM; Ramachandran S; Bentley DL
    Mol Cell; 2022 Oct; 82(19):3632-3645.e4. PubMed ID: 36206739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pleiotropic roles of SPT5 in transcription.
    Song A; Chen FX
    Transcription; 2022; 13(1-3):53-69. PubMed ID: 35876486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoforms of human O-GlcNAcase show distinct catalytic efficiencies.
    Li J; Huang CL; Zhang LW; Lin L; Li ZH; Zhang FW; Wang P
    Biochemistry (Mosc); 2010 Jul; 75(7):938-43. PubMed ID: 20673219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Spt5-Pol II by Small-Molecule Inhibitors Uncouples Distinct Activities and Reveals Additional Regulatory Roles.
    Bahat A; Lahav O; Plotnikov A; Leshkowitz D; Dikstein R
    Mol Cell; 2019 Nov; 76(4):617-631.e4. PubMed ID: 31564557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPT5 stabilization of promoter-proximal RNA polymerase II.
    Aoi Y; Takahashi YH; Shah AP; Iwanaszko M; Rendleman EJ; Khan NH; Cho BK; Goo YA; Ganesan S; Kelleher NL; Shilatifard A
    Mol Cell; 2021 Nov; 81(21):4413-4424.e5. PubMed ID: 34480849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs.
    Wada T; Takagi T; Yamaguchi Y; Ferdous A; Imai T; Hirose S; Sugimoto S; Yano K; Hartzog GA; Winston F; Buratowski S; Handa H
    Genes Dev; 1998 Feb; 12(3):343-56. PubMed ID: 9450929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Regions in the Spt5 Subunit of DRB Sensitivity-inducing Factor (DSIF) That Are Involved in Promoter-proximal Pausing.
    Qiu Y; Gilmour DS
    J Biol Chem; 2017 Mar; 292(13):5555-5570. PubMed ID: 28213523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target protein deglycosylation in living cells by a nanobody-fused split O-GlcNAcase.
    Ge Y; Ramirez DH; Yang B; D'Souza AK; Aonbangkhen C; Wong S; Woo CM
    Nat Chem Biol; 2021 May; 17(5):593-600. PubMed ID: 33686291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp.
    Bernecky C; Plitzko JM; Cramer P
    Nat Struct Mol Biol; 2017 Oct; 24(10):809-815. PubMed ID: 28892040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5).
    Decker TM
    J Mol Biol; 2021 Jul; 433(14):166657. PubMed ID: 32987031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro Biochemical Assays for O-GlcNAc-Processing Enzymes.
    Kim EJ
    Chembiochem; 2017 Aug; 18(15):1462-1472. PubMed ID: 28474822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release.
    Bunch H; Zheng X; Burkholder A; Dillon ST; Motola S; Birrane G; Ebmeier CC; Levine S; Fargo D; Hu G; Taatjes DJ; Calderwood SK
    Nat Struct Mol Biol; 2014 Oct; 21(10):876-83. PubMed ID: 25173174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.