These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27601598)

  • 1. Direct Mapping of Additional Modifications on Phosphorylated O-glycans of α-Dystroglycan by Mass Spectrometry Analysis in Conjunction with Knocking Out of Causative Genes for Dystroglycanopathy.
    Yagi H; Kuo CW; Obayashi T; Ninagawa S; Khoo KH; Kato K
    Mol Cell Proteomics; 2016 Nov; 15(11):3424-3434. PubMed ID: 27601598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDP-glycerol inhibits the synthesis of the functional
    Imae R; Manya H; Tsumoto H; Osumi K; Tanaka T; Mizuno M; Kanagawa M; Kobayashi K; Toda T; Endo T
    J Biol Chem; 2018 Aug; 293(31):12186-12198. PubMed ID: 29884773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Recent Advances in α-dystroglycanopathy].
    Kuga A; Kanagawa M; Toda T
    Brain Nerve; 2011 Nov; 63(11):1189-95. PubMed ID: 22068471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression in retinal neurons of fukutin and FKRP, the protein products of two dystroglycanopathy-causative genes.
    Haro C; Uribe ML; Quereda C; Cruces J; Martín-Nieto J
    Mol Vis; 2018; 24():43-58. PubMed ID: 29416295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of fukutin-related protein (FKRP), a ribitol-phosphate transferase related to muscular dystrophy.
    Kuwabara N; Imae R; Manya H; Tanaka T; Mizuno M; Tsumoto H; Kanagawa M; Kobayashi K; Toda T; Senda T; Endo T; Kato R
    Nat Commun; 2020 Jan; 11(1):303. PubMed ID: 31949166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Muscular Dystrophy Gene TMEM5 Encodes a Ribitol β1,4-Xylosyltransferase Required for the Functional Glycosylation of Dystroglycan.
    Manya H; Yamaguchi Y; Kanagawa M; Kobayashi K; Tajiri M; Akasaka-Manya K; Kawakami H; Mizuno M; Wada Y; Toda T; Endo T
    J Biol Chem; 2016 Nov; 291(47):24618-24627. PubMed ID: 27733679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell endogenous activities of fukutin and FKRP coexist with the ribitol xylosyltransferase, TMEM5.
    Nishihara R; Kobayashi K; Imae R; Tsumoto H; Manya H; Mizuno M; Kanagawa M; Endo T; Toda T
    Biochem Biophys Res Commun; 2018 Mar; 497(4):1025-1030. PubMed ID: 29477842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan.
    Manya H; Endo T
    Biochim Biophys Acta Gen Subj; 2017 Oct; 1861(10):2462-2472. PubMed ID: 28711406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 160 kb deletion in ISPD unmasking a recessive mutation in a patient with Walker-Warburg syndrome.
    Czeschik JC; Hehr U; Hartmann B; Lüdecke HJ; Rosenbaum T; Schweiger B; Wieczorek D
    Eur J Med Genet; 2013 Dec; 56(12):689-94. PubMed ID: 24120487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCYT2 synthesizes CDP-glycerol in mammals and reduced PCYT2 enhances the expression of functionally glycosylated α-dystroglycan.
    Imae R; Manya H; Tsumoto H; Miura Y; Endo T
    J Biochem; 2021 Oct; 170(2):183-194. PubMed ID: 34255834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of a novel monoclonal antibody against truncated glycoforms of α-dystroglycan lacking matriglycans.
    Yamasaki F; Umezawa F; Sensui T; Anzo M; Abo H; Kuo CW; Khoo KH; Kato K; Yagi H; Kawashima H
    Biochem Biophys Res Commun; 2021 Nov; 579():8-14. PubMed ID: 34583196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan.
    Gerin I; Ury B; Breloy I; Bouchet-Seraphin C; Bolsée J; Halbout M; Graff J; Vertommen D; Muccioli GG; Seta N; Cuisset JM; Dabaj I; Quijano-Roy S; Grahn A; Van Schaftingen E; Bommer GT
    Nat Commun; 2016 May; 7():11534. PubMed ID: 27194101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of post-phosphoryl modification in dystroglycanopathy mouse models and wild-type tissues expressing non-laminin binding form of α-dystroglycan.
    Kuga A; Kanagawa M; Sudo A; Chan YM; Tajiri M; Manya H; Kikkawa Y; Nomizu M; Kobayashi K; Endo T; Lu QL; Wada Y; Toda T
    J Biol Chem; 2012 Mar; 287(12):9560-7. PubMed ID: 22270369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: A review.
    Taniguchi-Ikeda M; Morioka I; Iijima K; Toda T
    Mol Aspects Med; 2016 Oct; 51():115-24. PubMed ID: 27421908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome.
    Buysse K; Riemersma M; Powell G; van Reeuwijk J; Chitayat D; Roscioli T; Kamsteeg EJ; van den Elzen C; van Beusekom E; Blaser S; Babul-Hirji R; Halliday W; Wright GJ; Stemple DL; Lin YY; Lefeber DJ; van Bokhoven H
    Hum Mol Genet; 2013 May; 22(9):1746-54. PubMed ID: 23359570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AGO61-dependent GlcNAc modification primes the formation of functional glycans on α-dystroglycan.
    Yagi H; Nakagawa N; Saito T; Kiyonari H; Abe T; Toda T; Wu SW; Khoo KH; Oka S; Kato K
    Sci Rep; 2013 Nov; 3():3288. PubMed ID: 24256719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscular Dystrophy with Ribitol-Phosphate Deficiency: A Novel Post-Translational Mechanism in Dystroglycanopathy.
    Kanagawa M; Toda T
    J Neuromuscul Dis; 2017; 4(4):259-267. PubMed ID: 29081423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prenatal muscle development in a mouse model for the secondary dystroglycanopathies.
    Kim J; Hopkinson M; Kavishwar M; Fernandez-Fuente M; Brown SC
    Skelet Muscle; 2016; 6():3. PubMed ID: 26900448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition.
    Praissman JL; Willer T; Sheikh MO; Toi A; Chitayat D; Lin YY; Lee H; Stalnaker SH; Wang S; Prabhakar PK; Nelson SF; Stemple DL; Moore SA; Moremen KW; Campbell KP; Wells L
    Elife; 2016 Apr; 5():. PubMed ID: 27130732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome.
    Willer T; Lee H; Lommel M; Yoshida-Moriguchi T; de Bernabe DB; Venzke D; Cirak S; Schachter H; Vajsar J; Voit T; Muntoni F; Loder AS; Dobyns WB; Winder TL; Strahl S; Mathews KD; Nelson SF; Moore SA; Campbell KP
    Nat Genet; 2012 May; 44(5):575-80. PubMed ID: 22522420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.