These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27602041)

  • 21. The Apocarotenoid Zaxinone Is a Positive Regulator of Strigolactone and Abscisic Acid Biosynthesis in Arabidopsis Roots.
    Ablazov A; Mi J; Jamil M; Jia KP; Wang JY; Feng Q; Al-Babili S
    Front Plant Sci; 2020; 11():578. PubMed ID: 32477389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis.
    Mashiguchi K; Sasaki E; Shimada Y; Nagae M; Ueno K; Nakano T; Yoneyama K; Suzuki Y; Asami T
    Biosci Biotechnol Biochem; 2009 Nov; 73(11):2460-5. PubMed ID: 19897913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Target sites for chemical regulation of strigolactone signaling.
    Nakamura H; Asami T
    Front Plant Sci; 2014; 5():623. PubMed ID: 25414720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A strigolactone signal is required for adventitious root formation in rice.
    Sun H; Tao J; Hou M; Huang S; Chen S; Liang Z; Xie T; Wei Y; Xie X; Yoneyama K; Xu G; Zhang Y
    Ann Bot; 2015 Jun; 115(7):1155-62. PubMed ID: 25888593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Strigolactone Signal Inhibits Secondary Lateral Root Development in Rice.
    Sun H; Xu F; Guo X; Wu D; Zhang X; Lou M; Luo F; Zhao Q; Xu G; Zhang Y
    Front Plant Sci; 2019; 10():1527. PubMed ID: 31824543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research.
    Mostofa MG; Li W; Nguyen KH; Fujita M; Tran LP
    Plant Cell Environ; 2018 Oct; 41(10):2227-2243. PubMed ID: 29869792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strigolactone versus gibberellin signaling: reemerging concepts?
    Wallner ES; López-Salmerón V; Greb T
    Planta; 2016 Jun; 243(6):1339-50. PubMed ID: 26898553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strigolactone and karrikin signal perception: receptors, enzymes, or both?
    Janssen BJ; Snowden KC
    Front Plant Sci; 2012; 3():296. PubMed ID: 23293648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological Functions of Strigolactones and Their Crosstalk With Other Phytohormones.
    Wu F; Gao Y; Yang W; Sui N; Zhu J
    Front Plant Sci; 2022; 13():821563. PubMed ID: 35283865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strigolactones, a novel carotenoid-derived plant hormone.
    Al-Babili S; Bouwmeester HJ
    Annu Rev Plant Biol; 2015; 66():161-86. PubMed ID: 25621512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis.
    Villaécija-Aguilar JA; Hamon-Josse M; Carbonnel S; Kretschmar A; Schmidt C; Dawid C; Bennett T; Gutjahr C
    PLoS Genet; 2019 Aug; 15(8):e1008327. PubMed ID: 31465451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strigolactone biosynthesis and perception.
    Seto Y; Yamaguchi S
    Curr Opin Plant Biol; 2014 Oct; 21():1-6. PubMed ID: 24981923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rice DWARF14 acts as an unconventional hormone receptor for strigolactone.
    Yao R; Wang L; Li Y; Chen L; Li S; Du X; Wang B; Yan J; Li J; Xie D
    J Exp Bot; 2018 Apr; 69(9):2355-2365. PubMed ID: 29365172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The importance of strigolactone transport regulation for symbiotic signaling and shoot branching.
    Borghi L; Liu GW; Emonet A; Kretzschmar T; Martinoia E
    Planta; 2016 Jun; 243(6):1351-60. PubMed ID: 27040840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid analysis of strigolactone receptor activity in a
    White ARF; Mendez JA; Khosla A; Nelson DC
    Plant Direct; 2022 Mar; 6(3):e389. PubMed ID: 35355884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen.
    Katyayini NU; Rinne PILH; van der Schoot C
    Plant Cell Physiol; 2019 Dec; 60(12):2797-2811. PubMed ID: 31504881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of strigolactones, a strategic account.
    Zwanenburg B; Ćavar Zeljković S; Pospíšil T
    Pest Manag Sci; 2016 Jan; 72(1):15-29. PubMed ID: 26304779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical genetics and strigolactone perception.
    Lumba S; Bunsick M; McCourt P
    F1000Res; 2017; 6():975. PubMed ID: 28690842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular basis of strigolactone perception in root-parasitic plants: aiming to control its germination with strigolactone agonists/antagonists.
    Miyakawa T; Xu Y; Tanokura M
    Cell Mol Life Sci; 2020 Mar; 77(6):1103-1113. PubMed ID: 31587093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds.
    Fukui K; Ito S; Asami T
    Mol Plant; 2013 Jan; 6(1):88-99. PubMed ID: 23204501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.