BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27602044)

  • 21. Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis.
    Shim JS; Imaizumi T
    Biochemistry; 2015 Jan; 54(2):157-70. PubMed ID: 25346271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Rhythmic Gene Entrained to Midnight May Regulate Photoperiod-Controlled Flowering in
    Yeang HY
    Yale J Biol Med; 2019 Jun; 92(2):213-223. PubMed ID: 31249482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of photoperiodic flowering time control in Arabidopsis and barley.
    Steffen A; Fischer A; Staiger D
    Methods Mol Biol; 2014; 1158():285-95. PubMed ID: 24792059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
    Nefissi R; Natsui Y; Miyata K; Oda A; Hase Y; Nakagawa M; Ghorbel A; Mizoguchi T
    J Exp Bot; 2011 May; 62(8):2731-44. PubMed ID: 21296763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decentralized circadian clocks process thermal and photoperiodic cues in specific tissues.
    Shimizu H; Katayama K; Koto T; Torii K; Araki T; Endo M
    Nat Plants; 2015 Nov; 1():15163. PubMed ID: 27251534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoperiod sensitivity of the Arabidopsis circadian clock is tissue-specific.
    Shimizu H; Araki T; Endo M
    Plant Signal Behav; 2015; 10(6):e1010933. PubMed ID: 26176897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental stress and flowering time: the photoperiodic connection.
    Riboni M; Robustelli Test A; Galbiati M; Tonelli C; Conti L
    Plant Signal Behav; 2014; 9(7):e29036. PubMed ID: 25763486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Daylength measurements by rice plants in photoperiodic short-day flowering.
    Izawa T
    Int Rev Cytol; 2007; 256():191-222. PubMed ID: 17241908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering.
    Ishikawa M; Kiba T; Chua NH
    Plant J; 2006 Jun; 46(5):736-46. PubMed ID: 16709190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of light-to-dark transitions on phase setting in circadian expression among clock-controlled genes in Pharbitis nil.
    Hayama R; Mizoguchi T; Coupland G
    Plant Signal Behav; 2018; 13(6):e1473686. PubMed ID: 29944436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana.
    Kunihiro A; Yamashino T; Nakamichi N; Niwa Y; Nakanishi H; Mizuno T
    Plant Cell Physiol; 2011 Aug; 52(8):1315-29. PubMed ID: 21666227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana.
    Galvão VC; Collani S; Horrer D; Schmid M
    Plant J; 2015 Dec; 84(5):949-62. PubMed ID: 26466761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dark and Circadian Regulation of mRNA Accumulation in the Short-Day Plant Pharbitis nil.
    O'Neill SD; Zhang XS; Zheng CC
    Plant Physiol; 1994 Feb; 104(2):569-580. PubMed ID: 12232107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures.
    Marín-González E; Matías-Hernández L; Aguilar-Jaramillo AE; Lee JH; Ahn JH; Suárez-López P; Pelaz S
    Plant Physiol; 2015 Oct; 169(2):1214-24. PubMed ID: 26243615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of flowering by ambient temperature.
    Capovilla G; Schmid M; Posé D
    J Exp Bot; 2015 Jan; 66(1):59-69. PubMed ID: 25326628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo.
    Dutta S; Biswas P; Chakraborty S; Mitra D; Pal A; Das M
    BMC Genomics; 2018 Mar; 19(1):190. PubMed ID: 29523071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual functions of the ZmCCT-associated quantitative trait locus in flowering and stress responses under long-day conditions.
    Ku L; Tian L; Su H; Wang C; Wang X; Wu L; Shi Y; Li G; Wang Z; Wang H; Song X; Dou D; Ren Z; Chen Y
    BMC Plant Biol; 2016 Nov; 16(1):239. PubMed ID: 27809780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inflorescence shoot elongation, but not flower primordia formation, is photoperiodically regulated in Arabidopsis lyrata.
    Kemi U; Leinonen PH; Savolainen O; Kuittinen H
    Ann Bot; 2019 Aug; 124(1):91-102. PubMed ID: 31321402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana.
    Niwa Y; Ito S; Nakamichi N; Mizoguchi T; Niinuma K; Yamashino T; Mizuno T
    Plant Cell Physiol; 2007 Jul; 48(7):925-37. PubMed ID: 17540692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.