BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27602044)

  • 61. Flowering Mechanisms and Environmental Stimuli for Flower Transition: Bases for Production Scheduling in Greenhouse Floriculture.
    Proietti S; Scariot V; De Pascale S; Paradiso R
    Plants (Basel); 2022 Feb; 11(3):. PubMed ID: 35161415
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Field evaluation of a model of photothermal flowering responses in a world lentil collection.
    Erskine W; Hussain A; Tahir M; Bahksh A; Ellis RH; Summerfield RJ; Roberts EH
    Theor Appl Genet; 1994 Jun; 88(3-4):423-8. PubMed ID: 24186029
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Editorial: Light, clock, flowering, and hormone pathways in attaining abiotic stress tolerance.
    Panigrahy M
    Front Plant Sci; 2023; 14():1215517. PubMed ID: 37426977
    [No Abstract]   [Full Text] [Related]  

  • 64. Environmental effects on feed utilization.
    Kaushik SJ
    Fish Physiol Biochem; 1986 Oct; 2(1-4):131-40. PubMed ID: 24233175
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The dark side of clock-controlled flowering.
    Rubio V; Deng XW
    F1000 Biol Rep; 2009 Jul; 1():57. PubMed ID: 20948627
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Circadian Rhythms and the Induction of Flowering in Sinapis alba.
    Kinet JM; Bernier G; Bodson M; Jacqmard A
    Plant Physiol; 1973 Mar; 51(3):598-600. PubMed ID: 16658378
    [No Abstract]   [Full Text] [Related]  

  • 67. Photoperiodic Flowering Response of Biloxi Soybean in 72-Hour Cycles.
    Coulter MW; Hamner KC
    Plant Physiol; 1964 Sep; 39(5):848-56. PubMed ID: 16656013
    [No Abstract]   [Full Text] [Related]  

  • 68. Photoperiodic Responses of Two Cestrum Species and Non-Interchangeability of Their Flowering Hormones.
    Griesel WO
    Plant Physiol; 1963 Jul; 38(4):479-82. PubMed ID: 16655819
    [No Abstract]   [Full Text] [Related]  

  • 69. Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering.
    Gil KE; Park MJ; Lee HJ; Park YJ; Han SH; Kwon YJ; Seo PJ; Jung JH; Park CM
    Plant J; 2017 Jan; 89(1):128-140. PubMed ID: 27607358
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Arabidopsis sickle Mutant Exhibits Altered Circadian Clock Responses to Cool Temperatures and Temperature-Dependent Alternative Splicing.
    Marshall CM; Tartaglio V; Duarte M; Harmon FG
    Plant Cell; 2016 Oct; 28(10):2560-2575. PubMed ID: 27624757
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Molecular Interactions Between Flowering Time and Abiotic Stress Pathways.
    Park HJ; Kim WY; Pardo JM; Yun DJ
    Int Rev Cell Mol Biol; 2016; 327():371-412. PubMed ID: 27692179
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Effect of Fluctuations in Photoperiod and Ambient Temperature on the Timing of Flowering: Time to Move on Natural Environmental Conditions.
    Song YH
    Mol Cells; 2016 Oct; 39(10):715-721. PubMed ID: 27788575
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana.
    Capovilla G; Symeonidi E; Wu R; Schmid M
    J Exp Bot; 2017 Nov; 68(18):5117-5127. PubMed ID: 29036339
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Research progress on the autonomous flowering time pathway in
    Cheng JZ; Zhou YP; Lv TX; Xie CP; Tian CE
    Physiol Mol Biol Plants; 2017 Jul; 23(3):477-485. PubMed ID: 28878488
    [TBL] [Abstract][Full Text] [Related]  

  • 75. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance.
    Zhang B; Holmlund M; Lorrain S; Norberg M; Bakó L; Fankhauser C; Nilsson O
    Elife; 2017 Aug; 6():. PubMed ID: 28826468
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Expanding Roles of PIFs in Signal Integration from Multiple Processes.
    Paik I; Kathare PK; Kim JI; Huq E
    Mol Plant; 2017 Aug; 10(8):1035-1046. PubMed ID: 28711729
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nitrogen regulates CRY1 phosphorylation and circadian clock input pathways.
    Zhou YH; Zhang ZW; Zheng C; Yuan S; He Y
    Plant Signal Behav; 2016 Sep; 11(9):e1219830. PubMed ID: 27617369
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager.
    Sanchez SE; Kay SA
    Cold Spring Harb Perspect Biol; 2016 Dec; 8(12):. PubMed ID: 27663772
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The control of flowering time by environmental factors.
    Cho LH; Yoon J; An G
    Plant J; 2017 May; 90(4):708-719. PubMed ID: 27995671
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhancing crop yield by optimizing plant developmental features.
    Mathan J; Bhattacharya J; Ranjan A
    Development; 2016 Sep; 143(18):3283-94. PubMed ID: 27624833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.