These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 27602055)
1. Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Kuuskeri J; Häkkinen M; Laine P; Smolander OP; Tamene F; Miettinen S; Nousiainen P; Kemell M; Auvinen P; Lundell T Biotechnol Biofuels; 2016; 9(1):192. PubMed ID: 27602055 [TBL] [Abstract][Full Text] [Related]
2. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. Mäkinen M; Kuuskeri J; Laine P; Smolander OP; Kovalchuk A; Zeng Z; Asiegbu FO; Paulin L; Auvinen P; Lundell T BMC Genomics; 2019 May; 20(1):430. PubMed ID: 31138126 [TBL] [Abstract][Full Text] [Related]
3. Transcription of lignocellulose-decomposition associated genes, enzyme activities and production of ethanol upon bioconversion of waste substrate by Phlebia radiata. Mäkinen MA; Risulainen N; Mattila H; Lundell TK Appl Microbiol Biotechnol; 2018 Jul; 102(13):5657-5672. PubMed ID: 29728725 [TBL] [Abstract][Full Text] [Related]
4. Expression on wood, molecular cloning and characterization of three lignin peroxidase (LiP) encoding genes of the white rot fungus Phlebia radiata. Hildén KS; Mäkelä MR; Hakala TK; Hatakka A; Lundell T Curr Genet; 2006 Feb; 49(2):97-105. PubMed ID: 16333658 [TBL] [Abstract][Full Text] [Related]
5. Decomposition of spruce wood and release of volatile organic compounds depend on decay type, fungal interactions and enzyme production patterns. Mali T; Mäki M; Hellén H; Heinonsalo J; Bäck J; Lundell T FEMS Microbiol Ecol; 2019 Sep; 95(9):. PubMed ID: 31494677 [TBL] [Abstract][Full Text] [Related]
6. Enzyme Activity Profiles Produced on Wood and Straw by Four Fungi of Different Decay Strategies. Veloz Villavicencio E; Mali T; Mattila HK; Lundell T Microorganisms; 2020 Jan; 8(1):. PubMed ID: 31906600 [TBL] [Abstract][Full Text] [Related]
7. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Hori C; Gaskell J; Igarashi K; Samejima M; Hibbett D; Henrissat B; Cullen D Mycologia; 2013; 105(6):1412-27. PubMed ID: 23935027 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of the Phanerochaete carnosa transcriptome during growth on aspen and spruce. Jurak E; Suzuki H; van Erven G; Gandier JA; Wong P; Chan K; Ho CY; Gong Y; Tillier E; Rosso MN; Kabel MA; Miyauchi S; Master ER BMC Genomics; 2018 Nov; 19(1):815. PubMed ID: 30424733 [TBL] [Abstract][Full Text] [Related]
9. Expression and molecular properties of a new laccase of the white rot fungus Phlebia radiata grown on wood. Mäkelä MR; Hildén KS; Hakala TK; Hatakka A; Lundell TK Curr Genet; 2006 Nov; 50(5):323-33. PubMed ID: 16927090 [TBL] [Abstract][Full Text] [Related]
10. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase. Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433 [TBL] [Abstract][Full Text] [Related]
11. Methionine oxidation of carbohydrate-active enzymes during white-rot wood decay. Molinelli L; Drula E; Gaillard J-C; Navarro D; Armengaud J; Berrin J-G; Tron T; Tarrago L Appl Environ Microbiol; 2024 Mar; 90(3):e0193123. PubMed ID: 38376171 [TBL] [Abstract][Full Text] [Related]
12. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe Shah F; Mali T; Lundell TK Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439983 [TBL] [Abstract][Full Text] [Related]
13. Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes. Mali T; Kuuskeri J; Shah F; Lundell TK PLoS One; 2017; 12(9):e0185171. PubMed ID: 28953947 [TBL] [Abstract][Full Text] [Related]
14. Oxidative Damage Control during Decay of Wood by Brown Rot Fungus Using Oxygen Radicals. Castaño JD; Zhang J; Anderson CE; Schilling JS Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30194102 [TBL] [Abstract][Full Text] [Related]
16. Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi. Presley GN; Panisko E; Purvine SO; Schilling JS Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884760 [TBL] [Abstract][Full Text] [Related]
17. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata. Mäkelä MR; Lundell T; Hatakka A; Hildén K Fungal Biol; 2013 Jan; 117(1):62-70. PubMed ID: 23332834 [TBL] [Abstract][Full Text] [Related]
18. Wood Modification by Furfuryl Alcohol Resulted in a Delayed Decomposition Response in Skrede I; Solbakken MH; Hess J; Fossdal CG; Hegnar O; Alfredsen G Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076422 [TBL] [Abstract][Full Text] [Related]
19. Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Marinovíc M; Di Falco M; Aguilar Pontes MV; Gorzsás A; Tsang A; de Vries RP; Mäkelä MR; Hildén K Biomolecules; 2022 Jul; 12(8):. PubMed ID: 35892327 [TBL] [Abstract][Full Text] [Related]
20. Nanostructural Analysis of Enzymatic and Non-enzymatic Brown Rot Fungal Deconstruction of the Lignocellulose Cell Wall Zhu Y; Plaza N; Kojima Y; Yoshida M; Zhang J; Jellison J; Pingali SV; O'Neill H; Goodell B Front Microbiol; 2020; 11():1389. PubMed ID: 32670241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]