These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27602587)

  • 1. Discovery of Key Dioxygenases that Diverged the Paraherquonin and Acetoxydehydroaustin Pathways in Penicillium brasilianum.
    Matsuda Y; Iwabuchi T; Fujimoto T; Awakawa T; Nakashima Y; Mori T; Zhang H; Hayashi F; Abe I
    J Am Chem Soc; 2016 Sep; 138(38):12671-7. PubMed ID: 27602587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure function and engineering of multifunctional non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis.
    Nakashima Y; Mori T; Nakamura H; Awakawa T; Hoshino S; Senda M; Senda T; Abe I
    Nat Commun; 2018 Jan; 9(1):104. PubMed ID: 29317628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic mechanism of the PrhA (V150L/A232S) double mutant involved in the fungal meroterpenoid biosynthetic pathway: a QM/MM study.
    Bai J; Yan L; Liu Y
    Phys Chem Chem Phys; 2019 Nov; 21(46):25658-25668. PubMed ID: 31725143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis.
    Matsuda Y; Awakawa T; Wakimoto T; Abe I
    J Am Chem Soc; 2013 Jul; 135(30):10962-5. PubMed ID: 23865690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piperazine ring formation by a single-module NRPS and cleavage by an α-KG-dependent nonheme iron dioxygenase in brasiliamide biosynthesis.
    Yuan B; Liu D; Guan X; Yan Y; Zhang J; Zhang Y; Yang D; Ma M; Lin W
    Appl Microbiol Biotechnol; 2020 Jul; 104(14):6149-6159. PubMed ID: 32436033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rewiring of the Austinoid Biosynthetic Pathway in Filamentous Fungi.
    Mattern DJ; Valiante V; Horn F; Petzke L; Brakhage AA
    ACS Chem Biol; 2017 Dec; 12(12):2927-2933. PubMed ID: 29076725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering the unusual D-ring construction in terretonin biosynthesis by collaboration of a multifunctional cytochrome P450 and a unique isomerase.
    Matsuda Y; Iwabuchi T; Wakimoto T; Awakawa T; Abe I
    J Am Chem Soc; 2015 Mar; 137(9):3393-401. PubMed ID: 25671343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthetic Elucidation and Structural Revision of Brevione E: Characterization of the Key Dioxygenase for Pathway Branching from Setosusin Biosynthesis.
    Yan D; Matsuda Y
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202210938. PubMed ID: 36196912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bifunctional old yellow enzyme from Penicillium roqueforti is involved in ergot alkaloid biosynthesis.
    Gerhards N; Li SM
    Org Biomol Chem; 2017 Oct; 15(38):8059-8071. PubMed ID: 28902217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonheme Iron- and 2-Oxoglutarate-Dependent Dioxygenases in Fungal Meroterpenoid Biosynthesis.
    Abe I
    Chem Pharm Bull (Tokyo); 2020; 68(9):823-831. PubMed ID: 32879222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis for the unusual ring reconstruction in fungal meroterpenoid biogenesis.
    Mori T; Iwabuchi T; Hoshino S; Wang H; Matsuda Y; Abe I
    Nat Chem Biol; 2017 Oct; 13(10):1066-1073. PubMed ID: 28759016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual chemistries in fungal meroterpenoid biosynthesis.
    Matsuda Y; Awakawa T; Mori T; Abe I
    Curr Opin Chem Biol; 2016 Apr; 31():1-7. PubMed ID: 26610189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cytochrome P450 serves as an unexpected terpene cyclase during fungal meroterpenoid biosynthesis.
    Chooi YH; Hong YJ; Cacho RA; Tantillo DJ; Tang Y
    J Am Chem Soc; 2013 Nov; 135(45):16805-8. PubMed ID: 24161266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthoester formation in fungal meroterpenoid austalide F biosynthesis.
    Awakawa T; Liu W; Bai T; Taniguchi T; Abe I
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1871):20220037. PubMed ID: 36633279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and enzyme production by three Penicillium species on monosaccharides.
    Jørgensen H; Mørkeberg A; Krogh KB; Olsson L
    J Biotechnol; 2004 Apr; 109(3):295-9. PubMed ID: 15066767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation.
    Matsuda Y; Bai T; Phippen CBW; Nødvig CS; Kjærbølling I; Vesth TC; Andersen MR; Mortensen UH; Gotfredsen CH; Abe I; Larsen TO
    Nat Commun; 2018 Jul; 9(1):2587. PubMed ID: 29968715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brasilianoids A-F, New Meroterpenoids From the Sponge-Associated Fungus
    Zhang J; Yuan B; Liu D; Gao S; Proksch P; Lin W
    Front Chem; 2018; 6():314. PubMed ID: 30101144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Penicillium expansum glucose oxidase-encoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit.
    Barad S; Horowitz SB; Moscovitz O; Lichter A; Sherman A; Prusky D
    Mol Plant Microbe Interact; 2012 Jun; 25(6):779-88. PubMed ID: 22352719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Furanoaustinol and 7-acetoxydehydroaustinol: new meroterpenoids from a marine-derived fungal strain Penicillium sp. SF-5497.
    Park JS; Quang TH; Yoon CS; Kim HJ; Sohn JH; Oh H
    J Antibiot (Tokyo); 2018 Jun; 71(6):557-563. PubMed ID: 29463888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a key prenyltransferase involved in biosynthesis of the most abundant fungal meroterpenoids derived from 3,5-dimethylorsellinic acid.
    Itoh T; Tokunaga K; Radhakrishnan EK; Fujii I; Abe I; Ebizuka Y; Kushiro T
    Chembiochem; 2012 May; 13(8):1132-5. PubMed ID: 22549923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.