BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27602730)

  • 1. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales.
    Kurniawan NA; Vos BE; Biebricher A; Wuite GJ; Peterman EJ; Koenderink GH
    Biophys J; 2016 Sep; 111(5):1026-34. PubMed ID: 27602730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-scale strain-stiffening of semiflexible bundle networks.
    Piechocka IK; Jansen KA; Broedersz CP; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2016 Feb; 12(7):2145-56. PubMed ID: 26761718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering.
    Vos BE; Martinez-Torres C; Burla F; Weisel JW; Koenderink GH
    Acta Biomater; 2020 Mar; 104():39-52. PubMed ID: 31923718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural hierarchy governs fibrin gel mechanics.
    Piechocka IK; Bacabac RG; Potters M; Mackintosh FC; Koenderink GH
    Biophys J; 2010 May; 98(10):2281-9. PubMed ID: 20483337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic remodeling of fiber networks with stiff inclusions under compressive loading.
    Carroll B; Thanh MH; Patteson AE
    Acta Biomater; 2023 Jun; 163():106-116. PubMed ID: 36182057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrin mechanical properties and their structural origins.
    Litvinov RI; Weisel JW
    Matrix Biol; 2017 Jul; 60-61():110-123. PubMed ID: 27553509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cells actively stiffen fibrin networks by generating contractile stress.
    Jansen KA; Bacabac RG; Piechocka IK; Koenderink GH
    Biophys J; 2013 Nov; 105(10):2240-51. PubMed ID: 24268136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic behavior and platelet retraction in low- and high-density fibrin gels.
    Wufsus AR; Rana K; Brown A; Dorgan JR; Liberatore MW; Neeves KB
    Biophys J; 2015 Jan; 108(1):173-83. PubMed ID: 25564864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
    Goren S; Ergaz B; Barak D; Sorkin R; Lesman A
    Acta Biomater; 2024 Jun; 181():272-281. PubMed ID: 38685460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous mechanics of Zn
    Xia J; Cai LH; Wu H; MacKintosh FC; Weitz DA
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33649231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrin fibers have extraordinary extensibility and elasticity.
    Liu W; Jawerth LM; Sparks EA; Falvo MR; Hantgan RR; Superfine R; Lord ST; Guthold M
    Science; 2006 Aug; 313(5787):634. PubMed ID: 16888133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels.
    Kang H; Wen Q; Janmey PA; Tang JX; Conti E; MacKintosh FC
    J Phys Chem B; 2009 Mar; 113(12):3799-805. PubMed ID: 19243107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The elasticity of an individual fibrin fiber in a clot.
    Collet JP; Shuman H; Ledger RE; Lee S; Weisel JW
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9133-7. PubMed ID: 15967976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for the nonlinear mechanics of fibrin networks under compression.
    Kim OV; Litvinov RI; Weisel JW; Alber MS
    Biomaterials; 2014 Aug; 35(25):6739-49. PubMed ID: 24840618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale mechanical characterization and computational modeling of fibrin gels.
    Jimenez JM; Tuttle T; Guo Y; Miles D; Buganza-Tepole A; Calve S
    Acta Biomater; 2023 May; 162():292-303. PubMed ID: 36965611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poroelasticity of (bio)polymer networks during compression: theory and experiment.
    Punter MTJJM; Vos BE; Mulder BM; Koenderink GH
    Soft Matter; 2020 Feb; 16(5):1298-1305. PubMed ID: 31922166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
    van Oosten ASG; Chen X; Chin L; Cruz K; Patteson AE; Pogoda K; Shenoy VB; Janmey PA
    Nature; 2019 Sep; 573(7772):96-101. PubMed ID: 31462779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain history dependence of the nonlinear stress response of fibrin and collagen networks.
    Münster S; Jawerth LM; Leslie BA; Weitz JI; Fabry B; Weitz DA
    Proc Natl Acad Sci U S A; 2013 Jul; 110(30):12197-202. PubMed ID: 23754380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels.
    Badiei N; Sowedan AM; Curtis DJ; Brown MR; Lawrence MJ; Campbell AI; Sabra A; Evans PA; Weisel JW; Chernysh IN; Nagaswami C; Williams PR; Hawkins K
    Clin Hemorheol Microcirc; 2015; 60(4):451-64. PubMed ID: 25624413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.