BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27602730)

  • 21. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
    Houser JR; Hudson NE; Ping L; O'Brien ET; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Nov; 99(9):3038-47. PubMed ID: 21044602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fibrin gels and their clinical and bioengineering applications.
    Janmey PA; Winer JP; Weisel JW
    J R Soc Interface; 2009 Jan; 6(30):1-10. PubMed ID: 18801715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fibrin clot fracture under cyclic fatigue and variable rate loading.
    Liu S; Bahmani A; Ghezelbash F; Li J
    Acta Biomater; 2024 Mar; 177():265-277. PubMed ID: 38336270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing fibrin's molecular response to shear and tensile deformation with coherent Raman microscopy.
    Wang Y; Kumar S; Nisar A; Bonn M; Rausch MK; Parekh SH
    Acta Biomater; 2021 Feb; 121():383-392. PubMed ID: 33321217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concentration independent modulation of local micromechanics in a fibrin gel.
    Kotlarchyk MA; Shreim SG; Alvarez-Elizondo MB; Estrada LC; Singh R; Valdevit L; Kniazeva E; Gratton E; Putnam AJ; Botvinick EL
    PLoS One; 2011; 6(5):e20201. PubMed ID: 21629793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear elasticity in biological gels.
    Storm C; Pastore JJ; MacKintosh FC; Lubensky TC; Janmey PA
    Nature; 2005 May; 435(7039):191-4. PubMed ID: 15889088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water.
    Brown AE; Litvinov RI; Discher DE; Purohit PK; Weisel JW
    Science; 2009 Aug; 325(5941):741-4. PubMed ID: 19661428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture.
    Tutwiler V; Maksudov F; Litvinov RI; Weisel JW; Barsegov V
    Acta Biomater; 2021 Sep; 131():355-369. PubMed ID: 34233219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The molecular origins of the mechanical properties of fibrin.
    Falvo MR; Gorkun OV; Lord ST
    Biophys Chem; 2010 Nov; 152(1-3):15-20. PubMed ID: 20888119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clots reveal anomalous elastic behavior of fiber networks.
    Zakharov A; Awan M; Cheng T; Gopinath A; Lee SJ; Ramasubramanian AK; Dasbiswas K
    Sci Adv; 2024 Jan; 10(2):eadh1265. PubMed ID: 38198546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks.
    Hudson NE; Houser JR; O'Brien ET; Taylor RM; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Apr; 98(8):1632-40. PubMed ID: 20409484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microstructural and mechanical differences between digested collagen-fibrin co-gels and pure collagen and fibrin gels.
    Lai VK; Frey CR; Kerandi AM; Lake SP; Tranquillo RT; Barocas VH
    Acta Biomater; 2012 Nov; 8(11):4031-42. PubMed ID: 22828381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A constitutive model for a maturing fibrin network.
    van Kempen THS; Bogaerds ACB; Peters GWM; van de Vosse FN
    Biophys J; 2014 Jul; 107(2):504-513. PubMed ID: 25028892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Buffers Strongly Modulate Fibrin Self-Assembly into Fibrous Networks.
    Kurniawan NA; van Kempen THS; Sonneveld S; Rosalina TT; Vos BE; Jansen KA; Peters GWM; van de Vosse FN; Koenderink GH
    Langmuir; 2017 Jun; 33(25):6342-6352. PubMed ID: 28558246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical behavior of collagen-fibrin co-gels reflects transition from series to parallel interactions with increasing collagen content.
    Lai VK; Lake SP; Frey CR; Tranquillo RT; Barocas VH
    J Biomech Eng; 2012 Jan; 134(1):011004. PubMed ID: 22482659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear strain stiffening is not sufficient to explain how far cells can feel on fibrous protein gels.
    Rudnicki MS; Cirka HA; Aghvami M; Sander EA; Wen Q; Billiar KL
    Biophys J; 2013 Jul; 105(1):11-20. PubMed ID: 23823219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programming the mechanics of cohesive fiber networks by compression.
    Vos BE; Liebrand LC; Vahabi M; Biebricher A; Wuite GJL; Peterman EJG; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2017 Dec; 13(47):8886-8893. PubMed ID: 29057402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell contraction induces long-ranged stress stiffening in the extracellular matrix.
    Han YL; Ronceray P; Xu G; Malandrino A; Kamm RD; Lenz M; Broedersz CP; Guo M
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4075-4080. PubMed ID: 29618614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular basis of fibrin clot elasticity.
    Lim BB; Lee EH; Sotomayor M; Schulten K
    Structure; 2008 Mar; 16(3):449-59. PubMed ID: 18294856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibrin structural and diffusional analysis suggests that fibers are permeable to solute transport.
    Leonidakis KA; Bhattacharya P; Patterson J; Vos BE; Koenderink GH; Vermant J; Lambrechts D; Roeffaers M; Van Oosterwyck H
    Acta Biomater; 2017 Jan; 47():25-39. PubMed ID: 27717911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.