These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1280 related articles for article (PubMed ID: 27602780)

  • 1. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.
    Wolfrum B; Kätelhön E; Yakushenko A; Krause KJ; Adly N; Hüske M; Rinklin P
    Acc Chem Res; 2016 Sep; 49(9):2031-40. PubMed ID: 27602780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocavity crossbar arrays for parallel electrochemical sensing on a chip.
    Kätelhön E; Mayer D; Banzet M; Offenhäusser A; Wolfrum B
    Beilstein J Nanotechnol; 2014; 5():1137-43. PubMed ID: 25161846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bench-Top Fabrication of an All-PDMS Microfluidic Electrochemical Cell Sensor Integrating Micro/Nanostructured Electrodes.
    Saem S; Zhu Y; Luu H; Moran-Mirabal J
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28362329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
    Hsieh K; Ferguson BS; Eisenstein M; Plaxco KW; Soh HT
    Acc Chem Res; 2015 Apr; 48(4):911-20. PubMed ID: 25785632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A local redox cycling-based electrochemical chip device with nanocavities for multi-electrochemical evaluation of embryoid bodies.
    Kanno Y; Ino K; Shiku H; Matsue T
    Lab Chip; 2015 Dec; 15(23):4404-14. PubMed ID: 26481771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries.
    Fu K; Kwon SR; Han D; Bohn PW
    Acc Chem Res; 2020 Apr; 53(4):719-728. PubMed ID: 31990518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous dual-electrodes with millimetre extensions: parallelized fabrication and area effects on redox cycling.
    Hüske M; Offenhäusser A; Wolfrum B
    Phys Chem Chem Phys; 2014 Jun; 16(23):11609-16. PubMed ID: 24806814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox cycling in nanoporous electrochemical devices.
    Hüske M; Stockmann R; Offenhäusser A; Wolfrum B
    Nanoscale; 2014 Jan; 6(1):589-98. PubMed ID: 24247480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric Nafion-Coated Nanopore Electrode Arrays as Redox-Cycling-Based Electrochemical Diodes.
    Fu K; Han D; Kwon SR; Bohn PW
    ACS Nano; 2018 Sep; 12(9):9177-9185. PubMed ID: 30080388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recessed ring-disk nanoelectrode arrays integrated in nanofluidic structures for selective electrochemical detection.
    Ma C; Contento NM; Gibson LR; Bohn PW
    Anal Chem; 2013 Oct; 85(20):9882-8. PubMed ID: 24074127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox cycling in nanoscale-recessed ring-disk electrode arrays for enhanced electrochemical sensitivity.
    Ma C; Contento NM; Gibson LR; Bohn PW
    ACS Nano; 2013 Jun; 7(6):5483-90. PubMed ID: 23691968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofluidic redox cycling amplification for the selective detection of catechol.
    Wolfrum B; Zevenbergen M; Lemay S
    Anal Chem; 2008 Feb; 80(4):972-7. PubMed ID: 18193890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Amplification in Side-by-Side Attoliter Nanogap Transducers.
    Zafarani HR; Mathwig K; Sudhölter EJR; Rassaei L
    ACS Sens; 2017 Jun; 2(6):724-728. PubMed ID: 28670622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly on optical fibers: a powerful nanofabrication tool for next generation "lab-on-fiber" optrodes.
    Galeotti F; Pisco M; Cusano A
    Nanoscale; 2018 Dec; 10(48):22673-22700. PubMed ID: 30500026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lab-on-fiber technology: a new vision for chemical and biological sensing.
    Ricciardi A; Crescitelli A; Vaiano P; Quero G; Consales M; Pisco M; Esposito E; Cusano A
    Analyst; 2015 Dec; 140(24):8068-79. PubMed ID: 26514109
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 64.