These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 27603017)

  • 1. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.
    Kuriakose M; Skotak M; Misistia A; Kahali S; Sundaramurthy A; Chandra N
    PLoS One; 2016; 11(9):e0161597. PubMed ID: 27603017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective testing of personal protective equipment in blast loading conditions in shock tube: Comparison of three different testing locations.
    Skotak M; Alay E; Zheng JQ; Halls V; Chandra N
    PLoS One; 2018; 13(6):e0198968. PubMed ID: 29894521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of driver gas composition on production of scaled Friedlander waveforms in an open-ended shock tube model.
    Reeder EL; Liber ML; Traubert OD; O'Connell CJ; Turner RC; Robson MJ
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36252558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.
    Reneer DV; Hisel RD; Hoffman JM; Kryscio RJ; Lusk BT; Geddes JW
    J Neurotrauma; 2011 Jan; 28(1):95-104. PubMed ID: 21083431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of secondary flow phenomena and their effect on primary shock conditions in shock tubes: Experimentation and numerical model.
    Kahali S; Townsend M; Mendez Nguyen M; Kim J; Alay E; Skotak M; Chandra N
    PLoS One; 2020; 15(1):e0227125. PubMed ID: 31945083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Compression Driven Shock Tube Designs in Replicating Free-Field Blast Conditions for Traumatic Brain Injury Studies.
    Sutar S; Ganpule SG
    J Neurotrauma; 2021 Jun; 38(12):1717-1729. PubMed ID: 33108952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model.
    Sundaramurthy A; Alai A; Ganpule S; Holmberg A; Plougonven E; Chandra N
    J Neurotrauma; 2012 Sep; 29(13):2352-64. PubMed ID: 22620716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock Wave Physics as Related to Primary Non-Impact Blast-Induced Traumatic Brain Injury.
    Rutter B; Song H; DePalma RG; Hubler G; Cui J; Gu Z; Johnson CE
    Mil Med; 2021 Jan; 186(Suppl 1):601-609. PubMed ID: 33499439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.
    Sundaramurthy A; Chandra N
    Front Neurol; 2014; 5():253. PubMed ID: 25520701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a multimodal blast sensor for measurement of head impact and over-pressurization exposure.
    Chu JJ; Beckwith JG; Leonard DS; Paye CM; Greenwald RM
    Ann Biomed Eng; 2012 Jan; 40(1):203-12. PubMed ID: 21994064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.
    Kabu S; Jaffer H; Petro M; Dudzinski D; Stewart D; Courtney A; Courtney M; Labhasetwar V
    PLoS One; 2015; 10(5):e0127971. PubMed ID: 26024446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a controlled shock wave delivered by a pneumatic table-top gas driven shock tube.
    Swietek B; Skotak M; Chandra N; Pfister BJ
    Rev Sci Instrum; 2019 Jul; 90(7):075116. PubMed ID: 31370428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Gas-Driven Shock Tubes to Produce Blast Wave Signatures.
    Kumar R; Nedungadi A
    Front Neurol; 2020; 11():90. PubMed ID: 32153491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Traumatic Brain Injury at Distant Locations After Exposure to Blast Waves: Preliminary Results from Animal and Phantom Experiments.
    Nakagawa A; Ohtani K; Goda K; Kudo D; Arafune T; Washio T; Tominaga T
    Acta Neurochir Suppl; 2016; 122():3-7. PubMed ID: 27165867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.
    Courtney AC; Andrusiv LP; Courtney MW
    Rev Sci Instrum; 2012 Apr; 83(4):045111. PubMed ID: 22559580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an FE model of the rat head subjected to air shock loading.
    Zhu F; Mao H; Dal Cengio Leonardi A; Wagner C; Chou C; Jin X; Bir C; Vandevord P; Yang KH; King AI
    Stapp Car Crash J; 2010 Nov; 54():211-25. PubMed ID: 21512910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave.
    Bolander R; Mathie B; Bir C; Ritzel D; VandeVord P
    Ann Biomed Eng; 2011 Oct; 39(10):2550-9. PubMed ID: 21735320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged but not short-duration blast waves elicit acute inflammation in a rodent model of primary blast limb trauma.
    Eftaxiopoulou T; Barnett-Vanes A; Arora H; Macdonald W; Nguyen TT; Itadani M; Sharrock AE; Britzman D; Proud WG; Bull AM; Rankin SM
    Injury; 2016 Mar; 47(3):625-32. PubMed ID: 26838938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the formation of Friedlander waves in a compressed-gas-driven shock tube.
    Tasissa AF; Hautefeuille M; Fitek JH; Radovitzky RA
    Proc Math Phys Eng Sci; 2016 Feb; 472(2186):20150611. PubMed ID: 27118888
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.