These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27603921)

  • 1. Promoter effect of hydration on the nucleation of nanoparticles: direct observation for gold and copper on rutile TiO2 (110).
    Iachella M; Wilson A; Naitabdi A; Bernard R; Prévot G; Loffreda D
    Nanoscale; 2016 Sep; 8(36):16475-85. PubMed ID: 27603921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced bonding of gold nanoparticles on oxidized TiO2(110).
    Matthey D; Wang JG; Wendt S; Matthiesen J; Schaub R; Laegsgaard E; Hammer B; Besenbacher F
    Science; 2007 Mar; 315(5819):1692-6. PubMed ID: 17379802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation and growth of Pt nanoparticles on reduced and oxidized rutile TiO₂ (110).
    Rieboldt F; Vilhelmsen LB; Koust S; Lauritsen JV; Helveg S; Lammich L; Besenbacher F; Hammer B; Wendt S
    J Chem Phys; 2014 Dec; 141(21):214702. PubMed ID: 25481156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110).
    Wahlström E; Lopez N; Schaub R; Thostrup P; Rønnau A; Africh C; Laegsgaard E; Nørskov JK; Besenbacher F
    Phys Rev Lett; 2003 Jan; 90(2):026101. PubMed ID: 12570557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of atomic step edges on the rutile TiO
    Wen HF; Miyazaki M; Zhang Q; Adachi Y; Li YJ; Sugawara Y
    Phys Chem Chem Phys; 2018 Nov; 20(44):28331-28337. PubMed ID: 30398504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical Au Concentration for the Stabilization of Au-Cu Nanoparticles on Rutile against Dissociation under Oxygen.
    Wilson A; Bernard R; Borensztein Y; Croset B; Cruguel H; Vlad A; Coati A; Garreau Y; Prévot G
    J Phys Chem Lett; 2015 Jun; 6(11):2050-5. PubMed ID: 26266501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation and growth of water ice on oxide surfaces: the influence of a precursor to water dissociation.
    Souda R; Aizawa T; Sugiyama N; Takeguchi M
    Phys Chem Chem Phys; 2020 Sep; 22(36):20515-20523. PubMed ID: 32966413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O2 adsorption on MO2 (M=Ru, Ir, Sn) films supported on rutile TiO2(110) by DFT calculations: Probing the nature of metal oxide-support interaction.
    Xu X; Sun X; Sun B; Peng H; Liu W; Wang X
    J Colloid Interface Sci; 2016 Jul; 473():100-11. PubMed ID: 27060230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NO adsorption and diffusion on hydroxylated rutile TiO2(110).
    Yu YY; Diebold U; Gong XQ
    Phys Chem Chem Phys; 2015 Oct; 17(40):26594-8. PubMed ID: 26395976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110).
    Molina LM; Rasmussen MD; Hammer B
    J Chem Phys; 2004 Apr; 120(16):7673-80. PubMed ID: 15267678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First principles study of CO oxidation on TiO2(110): the role of surface oxygen vacancies.
    Wu X; Selloni A; Nayak SK
    J Chem Phys; 2004 Mar; 120(9):4512-6. PubMed ID: 15268619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption sites of single noble metal atoms on the rutile TiO2 (1 1 0) surface influenced by different surface oxygen vacancies.
    Matsunaga K; Chang TY; Ishikawa R; Dong Q; Toyoura K; Nakamura A; Ikuhara Y; Shibata N
    J Phys Condens Matter; 2016 May; 28(17):175002. PubMed ID: 27033403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal atoms pathways on rutile TiO2 (110) surface: distribution of Ti3+ states and evidence of enhanced peripheral charge accumulation.
    Cai Y; Bai Z; Chintalapati S; Zeng Q; Feng YP
    J Chem Phys; 2013 Apr; 138(15):154711. PubMed ID: 23614440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced step edges on rutile TiO2(110) as competing defects to oxygen vacancies on the terraces and reactive sites for ethanol dissociation.
    Martinez U; Hansen JØ; Lira E; Kristoffersen HH; Huo P; Bechstein R; Lægsgaard E; Besenbacher F; Hammer B; Wendt S
    Phys Rev Lett; 2012 Oct; 109(15):155501. PubMed ID: 23102329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J; Kaxiras E; Friend CM
    Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of Au by surface OH: nucleation and electronic structure of gold on hydroxylated MgO(001).
    Brown MA; Fujimori Y; Ringleb F; Shao X; Stavale F; Nilius N; Sterrer M; Freund HJ
    J Am Chem Soc; 2011 Jul; 133(27):10668-76. PubMed ID: 21634792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational investigation of H2 adsorption and dissociation on Au nanoparticles supported on TiO2 surface.
    Lyalin A; Taketsugu T
    Faraday Discuss; 2011; 152():185-201; discussion 203-25. PubMed ID: 22455046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chain structures of surface hydroxyl groups formed via line oxygen vacancies on TiO2(110) surfaces studied using noncontact atomic force microscopy.
    Namai Y; Matsuoka O
    J Phys Chem B; 2005 Dec; 109(50):23948-54. PubMed ID: 16375383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.