These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 27603921)
21. CO2 adsorption on TiO2(110) rutile: insight from dispersion-corrected density functional theory calculations and scanning tunneling microscopy experiments. Sorescu DC; Lee J; Al-Saidi WA; Jordan KD J Chem Phys; 2011 Mar; 134(10):104707. PubMed ID: 21405184 [TBL] [Abstract][Full Text] [Related]
22. Au nanoparticles on Fe-modified rutile TiO Madej E; Korecki J; Spiridis N J Chem Phys; 2020 Feb; 152(5):054712. PubMed ID: 32035466 [TBL] [Abstract][Full Text] [Related]
23. Theoretical study of Au Agacino Valdés E; Tavizón G; de la Mora P J Comput Chem; 2020 Dec; 41(32):2750-2757. PubMed ID: 32984989 [TBL] [Abstract][Full Text] [Related]
24. Synthesis of palladium nanoparticles on TiO2(110) using a beta-diketonate precursor. Lei Y; Liu B; Lu J; Lin X; Gao L; Guisinger NP; Greeley JP; Elam JW Phys Chem Chem Phys; 2015 Mar; 17(9):6470-7. PubMed ID: 25657070 [TBL] [Abstract][Full Text] [Related]
25. A Molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. Boronat M; Concepción P; Corma A; González S; Illas F; Serna P J Am Chem Soc; 2007 Dec; 129(51):16230-7. PubMed ID: 18052067 [TBL] [Abstract][Full Text] [Related]
26. Nitrogen/gold codoping of the TiO2(101) anatase surface. A theoretical study based on DFT calculations. Ortega Y; Hernández NC; Menéndez-Proupin E; Graciani J; Sanz JF Phys Chem Chem Phys; 2011 Jun; 13(23):11340-50. PubMed ID: 21566817 [TBL] [Abstract][Full Text] [Related]
27. Adsorption and dissociation of COCl Deng P; Li L; Liu D; Chen X; Jiang W Phys Chem Chem Phys; 2021 Sep; 23(37):21218-21226. PubMed ID: 34542142 [TBL] [Abstract][Full Text] [Related]
28. A DFT study of water adsorption on rutile TiO2 (110) surface: The effects of surface steps. Zheng T; Wu C; Chen M; Zhang Y; Cummings PT J Chem Phys; 2016 Jul; 145(4):044702. PubMed ID: 27475381 [TBL] [Abstract][Full Text] [Related]
29. Scanning tunneling microscopy image simulation of the rutile (110) TiO2 surface with hybrid functionals and the localized basis set approach. Di Valentin C J Chem Phys; 2007 Oct; 127(15):154705. PubMed ID: 17949189 [TBL] [Abstract][Full Text] [Related]
30. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447 [TBL] [Abstract][Full Text] [Related]
31. O2 interaction and reactivity on a model hydroxylated rutile(110) surface. Tilocca A; Di Valentin C; Selloni A J Phys Chem B; 2005 Nov; 109(44):20963-7. PubMed ID: 16853717 [TBL] [Abstract][Full Text] [Related]
32. Anticorrelation between surface and subsurface point defects and the impact on the redox chemistry of TiO2(110). Yoon Y; Du Y; Garcia JC; Zhu Z; Wang ZT; Petrik NG; Kimmel GA; Dohnalek Z; Henderson MA; Rousseau R; Deskins NA; Lyubinetsky I Chemphyschem; 2015 Feb; 16(2):313-21. PubMed ID: 25359161 [TBL] [Abstract][Full Text] [Related]
33. Modeling the Morphology and Phase Stability of TiO2 Nanocrystals in Water. Barnard AS; Zapol P; Curtiss LA J Chem Theory Comput; 2005 Jan; 1(1):107-16. PubMed ID: 26641122 [TBL] [Abstract][Full Text] [Related]
34. Scanning tunneling microscopy and theoretical study of water adsorption on Fe3O4: implications for catalysis. Rim KT; Eom D; Chan SW; Flytzani-Stephanopoulos M; Flynn GW; Wen XD; Batista ER J Am Chem Soc; 2012 Nov; 134(46):18979-85. PubMed ID: 23092372 [TBL] [Abstract][Full Text] [Related]
35. Adsorption of oxalate on anatase (100) and rutile (110) surfaces in aqueous systems: experimental results vs. theoretical predictions. Mendive CB; Bredow T; Feldhoff A; Blesa MA; Bahnemann D Phys Chem Chem Phys; 2009 Mar; 11(11):1794-808. PubMed ID: 19290352 [TBL] [Abstract][Full Text] [Related]
36. Hydrogen reactivity on highly-hydroxylated TiO2(110) surfaces prepared via carboxylic acid adsorption and photolysis. Du Y; Petrik NG; Deskins NA; Wang Z; Henderson MA; Kimmel GA; Lyubinetsky I Phys Chem Chem Phys; 2012 Mar; 14(9):3066-74. PubMed ID: 22108618 [TBL] [Abstract][Full Text] [Related]
37. Density functional theory study of the adsorption of alkanethiols on Cu(111), Ag(111), and Au(111) in the low and high coverage regimes. Cometto FP; Paredes-Olivera P; Macagno VA; Patrito EM J Phys Chem B; 2005 Nov; 109(46):21737-48. PubMed ID: 16853824 [TBL] [Abstract][Full Text] [Related]
38. Direct Visualization of Au Atoms Bound to TiO Mellor A; Humphrey D; Yim CM; Pang CL; Idriss H; Thornton G J Phys Chem C Nanomater Interfaces; 2017 Nov; 121(44):24721-24725. PubMed ID: 29152035 [TBL] [Abstract][Full Text] [Related]
39. A 2D-3D structure transition of gold clusters on CeO2-X(111) surfaces and its influence on CO and O2 adsorption: a comprehensive DFT + U investigation. Han ZK; Gao Y Nanoscale; 2015 Jan; 7(1):308-16. PubMed ID: 25407915 [TBL] [Abstract][Full Text] [Related]
40. Ba adsorption on the stoichiometric and defective TiO(2) (110) surface from first-principles calculations. San Miguel MA; Oviedo J; Sanz JF J Phys Chem B; 2006 Oct; 110(39):19552-6. PubMed ID: 17004818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]