These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27604310)

  • 1. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion.
    Kajimoto M; Ledee DR; Olson AK; Isern NG; Robillard-Frayne I; Des Rosiers C; Portman MA
    J Cereb Blood Flow Metab; 2016 Nov; 36(11):1992-2004. PubMed ID: 27604310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is selective antegrade cerebral perfusion superior to retrograde cerebral perfusion for brain protection during deep hypothermic circulatory arrest? Metabolic evidence from microdialysis.
    Liang MY; Tang ZX; Chen GX; Rong J; Yao JP; Chen Z; Wu ZK
    Crit Care Med; 2014 May; 42(5):e319-28. PubMed ID: 24561569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.
    Liang MY; Chen GX; Tang ZX; Rong J; Yao JP; Wu ZK
    Artif Organs; 2016 Mar; 40(3):270-7. PubMed ID: 26333187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass.
    Allibhai T; DiGeronimo R; Whitin J; Salazar J; Yu TT; Ling XB; Cohen H; Dixon P; Madan A
    J Thorac Cardiovasc Surg; 2009 Dec; 138(6):1290-6. PubMed ID: 19660276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does supply meet demand? A comparison of perfusion strategies on cerebral metabolism in a neonatal swine model.
    Mavroudis CD; Ko T; Volk LE; Smood B; Morgan RW; Lynch JM; Davarajan M; Boorady TW; Licht DJ; Gaynor JW; Mascio CE; Kilbaugh TJ
    J Thorac Cardiovasc Surg; 2022 Jan; 163(1):e47-e58. PubMed ID: 33485668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional low-flow perfusion improves neurologic outcome compared with deep hypothermic circulatory arrest in neonatal piglets.
    Myung RJ; Petko M; Judkins AR; Schears G; Ittenbach RF; Waibel RJ; DeCampli WM
    J Thorac Cardiovasc Surg; 2004 Apr; 127(4):1051-6; discussion 1056-7. PubMed ID: 15052202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of cerebral blood flow and energy state in piglets after hypothermic circulatory arrest versus recovery after low-flow bypass.
    Kawata H; Fackler JC; Aoki M; Tsuji MK; Sawatari K; Offutt M; Hickey PR; Holtzman D; Jonas RA
    J Thorac Cardiovasc Surg; 1993 Oct; 106(4):671-85. PubMed ID: 8412262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children.
    Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG
    J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold retrograde cerebral perfusion improves cerebral protection during moderate hypothermic circulatory arrest: A long-term study in a porcine model.
    Anttila V; Kiviluoma K; Pokela M; Rimpiläinen J; Mäkiranta M; Jäntti V; Hirvonen J; Juvonen T
    J Thorac Cardiovasc Surg; 1999 Nov; 118(5):938-45. PubMed ID: 10534701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overactivation of poly(adenosine phosphate-ribose) polymerase 1 and molecular events in neuronal injury after deep hypothermic circulatory arrest: study in a rabbit model.
    Pan X; Sun L; Ma W; Tang Y; Long C; Tian L; Liu N; Feng Z; Zheng J
    J Thorac Cardiovasc Surg; 2007 Nov; 134(5):1227-33. PubMed ID: 17976454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral metabolic recovery from deep hypothermic circulatory arrest after treatment with arginine and nitro-arginine methyl ester.
    Hiramatsu T; Jonas RA; Miura T; duPlessis A; Tanji M; Forbess JM; Holtzman D
    J Thorac Cardiovasc Surg; 1996 Sep; 112(3):698-707. PubMed ID: 8800158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thromboxane A2-receptor blockade improves cerebral protection for deep hypothermic circulatory arrest.
    Tsui SS; Kirshbom PM; Davies MJ; Jacobs MT; Kern FH; Gaynor JW; Greeley WJ; Ungerleider RM
    Eur J Cardiothorac Surg; 1997 Aug; 12(2):228-35. PubMed ID: 9288512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest.
    Cho DG; Mulloy MR; Chang PA; Johnson MD; Aharon AS; Robison TA; Buckles TL; Byrne DW; Drinkwater DC
    J Thorac Cardiovasc Surg; 2004 Apr; 127(4):1033-40. PubMed ID: 15052200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermittent hypothermic asanguineous cerebral perfusion (cerebroplegia) protects the brain during prolonged circulatory arrest. A phosphorus 31 nuclear magnetic resonance study.
    Robbins RC; Balaban RS; Swain JA
    J Thorac Cardiovasc Surg; 1990 May; 99(5):878-84. PubMed ID: 2329827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of a leukocyte-depleting filter on cerebral and renal recovery after deep hypothermic circulatory arrest.
    Langley SM; Chai PJ; Tsui SS; Jaggers JJ; Ungerleider RM
    J Thorac Cardiovasc Surg; 2000 Jun; 119(6):1262-9. PubMed ID: 10838546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral protection during moderate hypothermic circulatory arrest: histopathology and magnetic resonance spectroscopy of brain energetics and intracellular pH in pigs.
    Filgueiras CL; Ryner L; Ye J; Yang L; Ede M; Sun J; Kozlowski P; Summers R; Saunders JK; Salerno TA; Deslauriers R
    J Thorac Cardiovasc Surg; 1996 Oct; 112(4):1073-80. PubMed ID: 8873735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of deep hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants and children.
    Greeley WJ; Ungerleider RM; Smith LR; Reves JG
    J Thorac Cardiovasc Surg; 1989 May; 97(5):737-45. PubMed ID: 2709864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pregabalin on cerebral outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats.
    Shim JK; Ma Q; Zhang Z; Podgoreanu MV; Mackensen GB
    J Thorac Cardiovasc Surg; 2014 Jul; 148(1):298-303. PubMed ID: 24698562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass.
    Aharon AS; Mulloy MR; Drinkwater DC; Lao OB; Johnson MD; Thunder M; Yu C; Chang P
    Eur J Cardiothorac Surg; 2004 Nov; 26(5):912-9. PubMed ID: 15519182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of age on cerebral recovery after deep hypothermic circulatory arrest in piglets.
    Nomura F; Forbess JM; Jonas RA; Hiramatsu T; du Plessis AJ; Walter G; Stromski ME; Holtzman DH
    Ann Thorac Surg; 1996 Jul; 62(1):115-22. PubMed ID: 8678629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.