BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27604408)

  • 1. ExonImpact: Prioritizing Pathogenic Alternative Splicing Events.
    Li M; Feng W; Zhang X; Yang Y; Wang K; Mort M; Cooper DN; Wang Y; Zhou Y; Liu Y
    Hum Mutat; 2017 Jan; 38(1):16-24. PubMed ID: 27604408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins.
    Hao Y; Colak R; Teyra J; Corbi-Verge C; Ignatchenko A; Hahne H; Wilhelm M; Kuster B; Braun P; Kaida D; Kislinger T; Kim PM
    Cell Rep; 2015 Jul; 12(2):183-9. PubMed ID: 26146086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic analysis of human kinase genes: a large number of genes and alternative splicing events result in functional and structural diversity.
    Milanesi L; Petrillo M; Sepe L; Boccia A; D'Agostino N; Passamano M; Di Nardo S; Tasco G; Casadio R; Paolella G
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S20. PubMed ID: 16351747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AVISPA: a web tool for the prediction and analysis of alternative splicing.
    Barash Y; Vaquero-Garcia J; González-Vallinas J; Xiong HY; Gao W; Lee LJ; Frey BJ
    Genome Biol; 2013; 14(10):R114. PubMed ID: 24156756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DoChaP: the domain change presenter.
    Gal-Oz ST; Haiat N; Eliyahu D; Shani G; Shay T
    Nucleic Acids Res; 2021 Jul; 49(W1):W162-W168. PubMed ID: 33988713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative visual analysis of the effects of alternative splicing on protein domain interaction networks.
    Emig D; Cline MS; Klein K; Kunert A; Mutzel P; Lengauer T; Albrecht M
    J Integr Bioinform; 2008 Aug; 5(2):. PubMed ID: 20134061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.
    Abascal F; Ezkurdia I; Rodriguez-Rivas J; Rodriguez JM; del Pozo A; Vázquez J; Valencia A; Tress ML
    PLoS Comput Biol; 2015 Jun; 11(6):e1004325. PubMed ID: 26061177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ASD: the Alternative Splicing Database.
    Thanaraj TA; Stamm S; Clark F; Riethoven JJ; Le Texier V; Muilu J
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D64-9. PubMed ID: 14681360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative Splicing Increases Sirtuin Gene Family Diversity and Modulates Their Subcellular Localization and Function.
    Zhang X; Ameer FS; Azhar G; Wei JY
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33418837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the change of exon splicing caused by genetic variant using support vector regression.
    Chen K; Lu Y; Zhao H; Yang Y
    Hum Mutat; 2019 Sep; 40(9):1235-1242. PubMed ID: 31070294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of protein features encoded by alternative exons using Exon Ontology.
    Tranchevent LC; Aubé F; Dulaurier L; Benoit-Pilven C; Rey A; Poret A; Chautard E; Mortada H; Desmet FO; Chakrama FZ; Moreno-Garcia MA; Goillot E; Janczarski S; Mortreux F; Bourgeois CF; Auboeuf D
    Genome Res; 2017 Jun; 27(6):1087-1097. PubMed ID: 28420690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RASE: recognition of alternatively spliced exons in C.elegans.
    Rätsch G; Sonnenburg S; Schölkopf B
    Bioinformatics; 2005 Jun; 21 Suppl 1():i369-77. PubMed ID: 15961480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology.
    Black DL
    Cell; 2000 Oct; 103(3):367-70. PubMed ID: 11081623
    [No Abstract]   [Full Text] [Related]  

  • 14. Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data.
    Badr E; ElHefnawi M; Heath LS
    PLoS One; 2016; 11(11):e0166978. PubMed ID: 27861625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High frequency of alternative first exons in erythroid genes suggests a critical role in regulating gene function.
    Tan JS; Mohandas N; Conboy JG
    Blood; 2006 Mar; 107(6):2557-61. PubMed ID: 16293607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DIGGER: exploring the functional role of alternative splicing in protein interactions.
    Louadi Z; Yuan K; Gress A; Tsoy O; Kalinina OV; Baumbach J; Kacprowski T; List M
    Nucleic Acids Res; 2021 Jan; 49(D1):D309-D318. PubMed ID: 32976589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatic analysis of exon repetition, exon scrambling and trans-splicing in humans.
    Shao X; Shepelev V; Fedorov A
    Bioinformatics; 2006 Mar; 22(6):692-8. PubMed ID: 16308355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Methods and Correlation of Exon-skipping Events with Splicing, Transcription, and Epigenetic Factors.
    Wang J; Ye Z; Huang TH; Shi H; Jin VX
    Methods Mol Biol; 2017; 1513():163-170. PubMed ID: 27807836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatic approaches for the identification of serpin genes with multiple reactive site loop coding exons.
    Börner S; Ragg H
    Methods Enzymol; 2011; 501():209-22. PubMed ID: 22078536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternatively spliced human genes by exon skipping--a database (ASHESdb).
    Sakharkar MK; Perumal BS; Lim YP; Chern LP; Yu Y; Kangueane P
    In Silico Biol; 2005; 5(3):221-5. PubMed ID: 15984933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.