BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27604478)

  • 21. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors.
    Qi S; Miao Z; Liu H; Xu Y; Feng Y; Cheng Z
    Bioconjug Chem; 2012 Jun; 23(6):1149-56. PubMed ID: 22621238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amyloid-β Deposits Target Efficient Near-Infrared Fluorescent Probes: Synthesis, in Vitro Evaluation, and in Vivo Imaging.
    Fu H; Tu P; Zhao L; Dai J; Liu B; Cui M
    Anal Chem; 2016 Feb; 88(3):1944-50. PubMed ID: 26717442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lab-on-a-drop: biocompatible fluorescent nanoprobes of gold nanoclusters for label-free evaluation of phosphorylation-induced inhibition of acetylcholinesterase activity towards the ultrasensitive detection of pesticide residues.
    Zhang N; Si Y; Sun Z; Li S; Li S; Lin Y; Wang H
    Analyst; 2014 Sep; 139(18):4620-8. PubMed ID: 25050413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel near-infrared fluorescent platform with good photostability and the application for a reaction-based Cu(2+) probe in living cells.
    Liu K; Shang H; Meng F; Liu Y; Lin W
    Talanta; 2016 Jan; 147():193-8. PubMed ID: 26592595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Bioorthogonal Near-Infrared Fluorogenic Probe for mRNA Detection.
    Wu H; Alexander SC; Jin S; Devaraj NK
    J Am Chem Soc; 2016 Sep; 138(36):11429-32. PubMed ID: 27510580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-infrared fluorescent probe for detection of thiophenols in water samples and living cells.
    Yu D; Huang F; Ding S; Feng G
    Anal Chem; 2014 Sep; 86(17):8835-41. PubMed ID: 25102423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity.
    Chang J; Li H; Hou T; Li F
    Biosens Bioelectron; 2016 Dec; 86():971-977. PubMed ID: 27498323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and evaluation of new NIR-fluorescent probes for cathepsin B: ICT versus FRET as a turn-ON mode-of-action.
    Kisin-Finfer E; Ferber S; Blau R; Satchi-Fainaro R; Shabat D
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2453-8. PubMed ID: 24767838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New huprine derivatives functionalized at position 9 as highly potent acetylcholinesterase inhibitors.
    Ronco C; Foucault R; Gillon E; Bohn P; Nachon F; Jean L; Renard PY
    ChemMedChem; 2011 May; 6(5):876-88. PubMed ID: 21344648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of NIR Chromenylium-Cyanine Fluorophore Library for "Switch-ON" and Ratiometric Detection of Bio-Active Species In Vivo.
    Wei Y; Cheng D; Ren T; Li Y; Zeng Z; Yuan L
    Anal Chem; 2016 Feb; 88(3):1842-9. PubMed ID: 26730493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multicolour single molecule imaging in cells with near infra-red dyes.
    Tynan CJ; Clarke DT; Coles BC; Rolfe DJ; Martin-Fernandez ML; Webb SE
    PLoS One; 2012; 7(4):e36265. PubMed ID: 22558412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.
    Sun J; Yang X
    Biosens Bioelectron; 2015 Dec; 74():177-82. PubMed ID: 26141104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of Turn-On Near-Infrared Fluorescent Probes for Highly Sensitive and Selective Monitoring of Biopolymers.
    Ducharme GT; LaCasse Z; Sheth T; Nesterova IV; Nesterov EE
    Angew Chem Int Ed Engl; 2020 May; 59(22):8440-8444. PubMed ID: 32135034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An ultrasensitive and selective near-infrared fluorescent probe for tracking carboxylesterases with large Stokes shift in living cells and mice.
    Zhang W; Qi C; Wang X; Fu Z; Zhang J; Zhou Y; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123708. PubMed ID: 38042124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging.
    Yuan L; Lin W; Chen H
    Biomaterials; 2013 Dec; 34(37):9566-71. PubMed ID: 24054843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient near infrared fluorescence detection of elastase enzyme using peptide-bound unsymmetrical squaraine dye.
    Saikiran M; Sato D; Pandey SS; Hayase S; Kato T
    Bioorg Med Chem Lett; 2017 Sep; 27(17):4024-4029. PubMed ID: 28784293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensitive detection of acetylcholine based on a novel boronate intramolecular charge transfer fluorescence probe.
    Liu C; Shen Y; Yin P; Li L; Liu M; Zhang Y; Li H; Yao S
    Anal Biochem; 2014 Nov; 465():172-8. PubMed ID: 25132563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A near-infrared fluorescent probe for the selective detection of HNO in living cells and in vivo.
    Liu P; Jing X; Yu F; Lv C; Chen L
    Analyst; 2015 Jul; 140(13):4576-83. PubMed ID: 25997397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A reaction-based near-infrared fluorescent sensor for Cu
    Zhang H; Feng L; Jiang Y; Wong YT; He Y; Zheng G; He J; Tan Y; Sun H; Ho D
    Biosens Bioelectron; 2017 Aug; 94():24-29. PubMed ID: 28242495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.