BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27604478)

  • 41. Construction of a Near-Infrared Fluorescent Turn-On Probe for Selenol and Its Bioimaging Application in Living Animals.
    Chen H; Dong B; Tang Y; Lin W
    Chemistry; 2015 Aug; 21(33):11696-700. PubMed ID: 26177833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zn(2+) binding-enabled excited state intramolecular proton transfer: a step toward new near-infrared fluorescent probes for imaging applications.
    Xu Y; Liu Q; Dou B; Wright B; Wang J; Pang Y
    Adv Healthc Mater; 2012 Jul; 1(4):485-92. PubMed ID: 23184782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Construction of a near-infrared fluorescence turn-on and ratiometric probe for imaging palladium in living cells.
    Chen H; Lin W; Yuan L
    Org Biomol Chem; 2013 Mar; 11(12):1938-41. PubMed ID: 23403484
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits.
    Cui M; Ono M; Watanabe H; Kimura H; Liu B; Saji H
    J Am Chem Soc; 2014 Mar; 136(9):3388-94. PubMed ID: 24555862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Research into selective biomarkers of erythrocyte exposure to organophosphorus compounds.
    Aminoff D; Bochar DA; Fuller AA; Mapp AK; Showalter HD; Kirchhoff PD
    Anal Biochem; 2009 Sep; 392(2):155-61. PubMed ID: 19497294
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A red-NIR emissive probe for the selective detection of albumin in urine samples and live cells.
    Rajasekhar K; Achar CJ; Govindaraju T
    Org Biomol Chem; 2017 Feb; 15(7):1584-1588. PubMed ID: 28134375
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Far-red/near-infrared fluorescence light-up probes for specific in vitro and in vivo imaging of a tumour-related protein.
    Chen C; Hua Y; Hu Y; Fang Y; Ji S; Yang Z; Ou C; Kong D; Ding D
    Sci Rep; 2016 Mar; 6():23190. PubMed ID: 26984064
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cholinesterase inhibitors proposed for treating dementia in Alzheimer's disease: selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase.
    Pacheco G; Palacios-Esquivel R; Moss DE
    J Pharmacol Exp Ther; 1995 Aug; 274(2):767-70. PubMed ID: 7636741
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and evaluation of radioiodine-labelled CP-118,954 for the in-vivo imaging of acetylcholinesterase.
    Lee I; Choe YS; Ryu EK; Choi BW; Choi JY; Choi Y; Lee KH; Kim BT
    Nucl Med Commun; 2007 Jul; 28(7):561-6. PubMed ID: 17538398
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly Efficient Far Red/Near-Infrared Solid Fluorophores: Aggregation-Induced Emission, Intramolecular Charge Transfer, Twisted Molecular Conformation, and Bioimaging Applications.
    Lu H; Zheng Y; Zhao X; Wang L; Ma S; Han X; Xu B; Tian W; Gao H
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):155-9. PubMed ID: 26576818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of acetylcholinesterase and butyrylcholinesterase inhibition on breathing in mice adapted or not to reduced acetylcholinesterase.
    Boudinot E; Taysse L; Daulon S; Chatonnet A; Champagnat J; Foutz AS
    Pharmacol Biochem Behav; 2005 Jan; 80(1):53-61. PubMed ID: 15652380
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A selective near-infrared fluorescent probe for singlet oxygen in living cells.
    Xu K; Wang L; Qiang M; Wang L; Li P; Tang B
    Chem Commun (Camb); 2011 Jul; 47(26):7386-8. PubMed ID: 21625714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design, synthesis and application of a near-infrared fluorescent probe for in vivo imaging of aminopeptidase N.
    He X; Hu Y; Shi W; Li X; Ma H
    Chem Commun (Camb); 2017 Aug; 53(68):9438-9441. PubMed ID: 28792016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design, synthesis, and biological evaluation of coumarin derivatives tethered to an edrophonium-like fragment as highly potent and selective dual binding site acetylcholinesterase inhibitors.
    Pisani L; Catto M; Giangreco I; Leonetti F; Nicolotti O; Stefanachi A; Cellamare S; Carotti A
    ChemMedChem; 2010 Sep; 5(9):1616-30. PubMed ID: 20677317
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A naked-eye visible and fluorescence "turn-on" probe for acetyl-cholinesterase assay and thiols as well as imaging of living cells.
    Cui K; Chen Z; Wang Z; Zhang G; Zhang D
    Analyst; 2011 Jan; 136(1):191-5. PubMed ID: 20927440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A polyamine-modified near-infrared fluorescent probe for selective staining of live cancer cells.
    König SG; Öz S; Krämer R
    Chem Commun (Camb); 2015 Apr; 51(34):7360-3. PubMed ID: 25820226
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selenocysteine detection and bioimaging in living cells by a colorimetric and near-infrared fluorescent turn-on probe with a large stokes shift.
    Li M; Feng W; Zhai Q; Feng G
    Biosens Bioelectron; 2017 Jan; 87():894-900. PubMed ID: 27664408
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging.
    Peck EM; Battles PM; Rice DR; Roland FM; Norquest KA; Smith BD
    Bioconjug Chem; 2016 May; 27(5):1400-10. PubMed ID: 27088305
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Radiosynthesis and in vivo evaluation of fluorinated huprine derivates as PET radiotracers of acetylcholinesterase.
    Da Costa Branquinho E; Becker G; Bouteiller C; Jean L; Renard PY; Zimmer L
    Nucl Med Biol; 2013 May; 40(4):554-60. PubMed ID: 23522975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice.
    Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J
    Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.