These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27604650)

  • 1. Photoactuators for Direct Optical-to-Mechanical Energy Conversion: From Nanocomponent Assembly to Macroscopic Deformation.
    Hu Y; Li Z; Lan T; Chen W
    Adv Mater; 2016 Dec; 28(47):10548-10556. PubMed ID: 27604650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical fibre taper-enabled waveguide photoactuators.
    Xiao J; Zhou T; Yao N; Ma S; Pan C; Wang P; Fu H; Liu H; Pan J; Yu L; Wang S; Yang W; Tong L; Zhang L
    Nat Commun; 2022 Jan; 13(1):363. PubMed ID: 35042865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent photoactuators based on localized-surface-plasmon-resonant semiconductor nanocrystals: a platform for camouflage soft robots.
    Huang F; Weng M; Feng Z; Li X; Zhang W; Chen L
    Nanoscale; 2020 Jun; 12(22):11878-11886. PubMed ID: 32315023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Photoactuators: Macroscopic Photomechanical Responses of Metal-Organic Frameworks to Irradiation by UV Light.
    Shi YX; Zhang WH; Abrahams BF; Braunstein P; Lang JP
    Angew Chem Int Ed Engl; 2019 Jul; 58(28):9453-9458. PubMed ID: 31050843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sunlight-driven eco-friendly smart curtain based on infrared responsive graphene oxide-polymer photoactuators.
    Leeladhar ; Raturi P; Singh JP
    Sci Rep; 2018 Feb; 8(1):3687. PubMed ID: 29487309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoactuators Based on Plastically Flexible α-Cyanostilbene Molecular Crystals Driven by the Solid-State [2+2] Cycloaddition Reaction.
    Wei Y; Chen K; Zhu S; Wu W; Zhao H; Huang X; Wang N; Zhou L; Wang T; Wang J; Hao H
    Small; 2024 Apr; 20(14):e2307756. PubMed ID: 37987091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Graphene-Based Bimorph Structure for Design of High Performance Photoactuators.
    Hu Y; Wu G; Lan T; Zhao J; Liu Y; Chen W
    Adv Mater; 2015 Dec; 27(47):7867-73. PubMed ID: 26498737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directing Coupled Motion with Light: A Key Step Toward Machine-Like Function.
    Costil R; Holzheimer M; Crespi S; Simeth NA; Feringa BL
    Chem Rev; 2021 Nov; 121(21):13213-13237. PubMed ID: 34533944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable and Recyclable Photoactuators Based on Azobenzene-Containing Polymers.
    Chen M; Liang S; Liu C; Liu Y; Wu S
    Front Chem; 2020; 8():706. PubMed ID: 32974276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoactuators and motors based on carbon nanotubes with selective chirality distributions.
    Zhang X; Yu Z; Wang C; Zarrouk D; Seo JW; Cheng JC; Buchan AD; Takei K; Zhao Y; Ager JW; Zhang J; Hettick M; Hersam MC; Pisano AP; Fearing RS; Javey A
    Nat Commun; 2014; 5():2983. PubMed ID: 24394587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators.
    Lu X; Guo S; Tong X; Xia H; Zhao Y
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28585247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-Bound Diarylethene-Based Anisotropic Metal-Organic Framework Films as Photoactuators with a Directed Response.
    Jiang Y; Liu Y; Grosjean S; Bon V; Hodapp P; Kanj AB; Kaskel S; Bräse S; Wöll C; Heinke L
    Angew Chem Int Ed Engl; 2023 May; 62(20):e202218052. PubMed ID: 36808409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.
    Zhao F; Shi Y; Pan L; Yu G
    Acc Chem Res; 2017 Jul; 50(7):1734-1743. PubMed ID: 28649845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximizing the performance of photothermal actuators by combining smart materials with supplementary advantages.
    Wang T; Torres D; Fernández FE; Wang C; Sepúlveda N
    Sci Adv; 2017 Apr; 3(4):e1602697. PubMed ID: 28439553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photopolymerization-Driven Macroscopic Mechanical Motions of a Composite Film Containing a Vinyl Coordination Polymer.
    Yang ZY; Sang X; Liu D; Li QY; Lang F; Abrahams BF; Hou H; Braunstein P; Lang JP
    Angew Chem Int Ed Engl; 2023 May; 62(20):e202302429. PubMed ID: 36920791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accounts of applied molecular rotors and rotary motors: recent advances.
    Singhania A; Kalita S; Chettri P; Ghosh S
    Nanoscale Adv; 2023 Jun; 5(12):3177-3208. PubMed ID: 37325522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic Micro/Nanomotors: From Construction to Applications.
    Dong R; Cai Y; Yang Y; Gao W; Ren B
    Acc Chem Res; 2018 Sep; 51(9):1940-1947. PubMed ID: 30152999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors.
    Li Q; Fuks G; Moulin E; Maaloum M; Rawiso M; Kulic I; Foy JT; Giuseppone N
    Nat Nanotechnol; 2015 Feb; 10(2):161-5. PubMed ID: 25599191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Shapes and Sizes of Molecular Crystals to Achieve Versatile Photomechanical Behaviors.
    Tong F; Qu DH
    Langmuir; 2022 Apr; 38(16):4793-4801. PubMed ID: 35404608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors.
    Chen J; Leung FK; Stuart MCA; Kajitani T; Fukushima T; van der Giessen E; Feringa BL
    Nat Chem; 2018 Feb; 10(2):132-138. PubMed ID: 29359757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.