These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 27604654)
41. Mineralization regulation and biological influence of bioactive glass-collagen-phosphatidylserine composite scaffolds. Yang C; Wang Y; Chen X Sci China Life Sci; 2012 Mar; 55(3):236-40. PubMed ID: 22527520 [TBL] [Abstract][Full Text] [Related]
42. Bone integration capability of a series of strontium-containing hydroxyapatite coatings formed by micro-arc oxidation. Yan J; Sun JF; Chu PK; Han Y; Zhang YM J Biomed Mater Res A; 2013 Sep; 101(9):2465-80. PubMed ID: 23348908 [TBL] [Abstract][Full Text] [Related]
43. Oxygen diffusion in marine-derived tissue engineering scaffolds. Boccardi E; Belova IV; Murch GE; Boccaccini AR; Fiedler T J Mater Sci Mater Med; 2015 Jun; 26(6):200. PubMed ID: 26111951 [TBL] [Abstract][Full Text] [Related]
44. Effect of copper-doped silicate 13-93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo. Lin Y; Xiao W; Bal BS; Rahaman MN Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():440-452. PubMed ID: 27287141 [TBL] [Abstract][Full Text] [Related]
45. Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Midha S; Kim TB; van den Bergh W; Lee PD; Jones JR; Mitchell CA Acta Biomater; 2013 Nov; 9(11):9169-82. PubMed ID: 23891811 [TBL] [Abstract][Full Text] [Related]
46. In vitro and in vivo dissolution of biocompatible S59 glass scaffolds. Aalto-Setälä L; Uppstu P; Björkenheim R; Strömberg G; Lindfors NC; Pajarinen J; Hupa L J Mater Sci Mater Med; 2024 Jul; 35(1):38. PubMed ID: 38958834 [TBL] [Abstract][Full Text] [Related]
47. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies. Veronesi F; Giavaresi G; Guarino V; Raucci MG; Sandri M; Tampieri A; Ambrosio L; Fini M J Biomed Mater Res A; 2015 Sep; 103(9):2932-41. PubMed ID: 25689266 [TBL] [Abstract][Full Text] [Related]
48. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Gu Y; Huang W; Rahaman MN; Day DE Acta Biomater; 2013 Nov; 9(11):9126-36. PubMed ID: 23827095 [TBL] [Abstract][Full Text] [Related]
49. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569 [TBL] [Abstract][Full Text] [Related]
50. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700 [TBL] [Abstract][Full Text] [Related]
51. ZnO-mesoporous glass scaffolds loaded with osteostatin and mesenchymal cells improve bone healing in a rabbit bone defect. Lozano D; Gil-Albarova J; Heras C; Sánchez-Salcedo S; Gómez-Palacio VE; Gómez-Blasco A; Doadrio JC; Vallet-Regí M; Salinas AJ J Mater Sci Mater Med; 2020 Oct; 31(11):100. PubMed ID: 33130982 [TBL] [Abstract][Full Text] [Related]
52. Electrically conductive borate-based bioactive glass scaffolds for bone tissue engineering applications. Turk M; Deliormanlı AM J Biomater Appl; 2017 Jul; 32(1):28-39. PubMed ID: 28541125 [TBL] [Abstract][Full Text] [Related]
53. Ectopic bone formation in and soft-tissue response to P(CL/DLLA)/bioactive glass composite scaffolds. Meretoja VV; Tirri T; Malin M; Seppälä JV; Närhi TO Clin Oral Implants Res; 2014 Feb; 25(2):159-64. PubMed ID: 23106633 [TBL] [Abstract][Full Text] [Related]
54. Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair. Gu Y; Wang G; Zhang X; Zhang Y; Zhang C; Liu X; Rahaman MN; Huang W; Pan H Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():294-300. PubMed ID: 24433915 [TBL] [Abstract][Full Text] [Related]
55. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654 [TBL] [Abstract][Full Text] [Related]
56. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. Sanzana ES; Navarro M; Ginebra MP; Planell JA; Ojeda AC; Montecinos HA J Biomed Mater Res A; 2014 Jun; 102(6):1767-73. PubMed ID: 23813739 [TBL] [Abstract][Full Text] [Related]
57. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration. Renghini C; Komlev V; Fiori F; Verné E; Baino F; Vitale-Brovarone C Acta Biomater; 2009 May; 5(4):1328-37. PubMed ID: 19038589 [TBL] [Abstract][Full Text] [Related]
58. [Effect of pH on the chelation between strontium ions and decellularized small intestinal submucosal sponge scaffolds]. Li YK; Wang M; Tang L; Liu YH; Chen XY Beijing Da Xue Xue Bao Yi Xue Ban; 2023 Feb; 55(1):44-51. PubMed ID: 36718688 [TBL] [Abstract][Full Text] [Related]
59. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964 [TBL] [Abstract][Full Text] [Related]
60. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Poh PS; Hutmacher DW; Stevens MM; Woodruff MA Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]