These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A bioenergetics assay for studying the effects of environmental stressors on mitochondrial function in vivo in zebrafish larvae. Raftery TD; Jayasundara N; Di Giulio RT Comp Biochem Physiol C Toxicol Pharmacol; 2017 Feb; 192():23-32. PubMed ID: 27939721 [TBL] [Abstract][Full Text] [Related]
6. Analysis of TLR-Induced Metabolic Changes in Dendritic Cells Using the Seahorse XF(e)96 Extracellular Flux Analyzer. Pelgrom LR; van der Ham AJ; Everts B Methods Mol Biol; 2016; 1390():273-85. PubMed ID: 26803635 [TBL] [Abstract][Full Text] [Related]
7. Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. Opii WO; Nukala VN; Sultana R; Pandya JD; Day KM; Merchant ML; Klein JB; Sullivan PG; Butterfield DA J Neurotrauma; 2007 May; 24(5):772-89. PubMed ID: 17518533 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain. Kilbaugh TJ; Karlsson M; Byro M; Bebee A; Ralston J; Sullivan S; Duhaime AC; Hansson MJ; Elmér E; Margulies SS Exp Neurol; 2015 Sep; 271():136-44. PubMed ID: 26028309 [TBL] [Abstract][Full Text] [Related]
9. Time-Course Evaluation of Brain Regional Mitochondrial Bioenergetics in a Pre-Clinical Model of Severe Penetrating Traumatic Brain Injury. Pandya JD; Leung LY; Hwang HM; Yang X; Deng-Bryant Y; Shear DA J Neurotrauma; 2021 Aug; 38(16):2323-2334. PubMed ID: 33544034 [TBL] [Abstract][Full Text] [Related]
10. Assessing Calcium-Stimulated Mitochondrial Bioenergetics Using the Seahorse XF96 Analyzer. Wettmarshausen J; Perocchi F Methods Mol Biol; 2019; 1925():197-222. PubMed ID: 30674029 [TBL] [Abstract][Full Text] [Related]
11. Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology. Shah-Simpson S; Pereira CF; Dumoulin PC; Caradonna KL; Burleigh BA Mol Biochem Parasitol; 2016 Aug; 208(2):91-5. PubMed ID: 27392747 [TBL] [Abstract][Full Text] [Related]
12. Assessing Mitochondrial Bioenergetics by Respirometry in Cells or Isolated Organelles. Vial G; Guigas B Methods Mol Biol; 2018; 1732():273-287. PubMed ID: 29480482 [TBL] [Abstract][Full Text] [Related]
13. Guanosine protects against behavioural and mitochondrial bioenergetic alterations after mild traumatic brain injury. Courtes AA; Gonçalves DF; Hartmann DD; da Rosa PC; Cassol G; Royes LFF; de Carvalho NR; Soares FAA Brain Res Bull; 2020 Oct; 163():31-39. PubMed ID: 32681970 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Rowley S; Liang LP; Fulton R; Shimizu T; Day B; Patel M Neurobiol Dis; 2015 Mar; 75():151-8. PubMed ID: 25600213 [TBL] [Abstract][Full Text] [Related]
15. In vitro screening of cell bioenergetics to assess mitochondrial dysfunction in drug development. Tilmant K; Gerets H; De Ron P; Hanon E; Bento-Pereira C; Atienzar FA Toxicol In Vitro; 2018 Oct; 52():374-383. PubMed ID: 30030051 [TBL] [Abstract][Full Text] [Related]
16. Live Metabolic Profile Analysis of Zebrafish Embryos Using a Seahorse XF 24 Extracellular Flux Analyzer. Bond ST; McEwen KA; Yoganantharajah P; Gibert Y Methods Mol Biol; 2018; 1797():393-401. PubMed ID: 29896705 [TBL] [Abstract][Full Text] [Related]
17. Traumatic brain injury and mitochondrial dysfunction. Hiebert JB; Shen Q; Thimmesch AR; Pierce JD Am J Med Sci; 2015 Aug; 350(2):132-8. PubMed ID: 26083647 [TBL] [Abstract][Full Text] [Related]
18. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury. Dai W; Cheng HL; Huang RQ; Zhuang Z; Shi JX Brain Res; 2009 Jan; 1251():287-95. PubMed ID: 19063873 [TBL] [Abstract][Full Text] [Related]
19. Assessing Mitochondrial Bioenergetics in Isolated Mitochondria from Various Mouse Tissues Using Seahorse XF96 Analyzer. Iuso A; Repp B; Biagosch C; Terrile C; Prokisch H Methods Mol Biol; 2017; 1567():217-230. PubMed ID: 28276021 [TBL] [Abstract][Full Text] [Related]
20. The optimal dosage and window of opportunity to maintain mitochondrial homeostasis following traumatic brain injury using the uncoupler FCCP. Pandya JD; Pauly JR; Sullivan PG Exp Neurol; 2009 Aug; 218(2):381-9. PubMed ID: 19477175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]