These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 27604953)
1. Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li-S Batteries. Jin S; Xin S; Wang L; Du Z; Cao L; Chen J; Kong X; Gong M; Lu J; Zhu Y; Ji H; Ruoff RS Adv Mater; 2016 Nov; 28(41):9094-9102. PubMed ID: 27604953 [TBL] [Abstract][Full Text] [Related]
2. Dual-Function, Tunable, Nitrogen-Doped Carbon for High-Performance Li Metal-Sulfur Full Cell. Li H; Cheng Z; Natan A; Hafez AM; Cao D; Yang Y; Zhu H Small; 2019 Feb; 15(5):e1804609. PubMed ID: 30632281 [TBL] [Abstract][Full Text] [Related]
3. Advanced 3D Current Collectors for Lithium-Based Batteries. Jin S; Jiang Y; Ji H; Yu Y Adv Mater; 2018 Nov; 30(48):e1802014. PubMed ID: 30125397 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes. Chen J; Zhao J; Lei L; Li P; Chen J; Zhang Y; Wang Y; Ma Y; Wang D Nano Lett; 2020 May; 20(5):3403-3410. PubMed ID: 32239948 [TBL] [Abstract][Full Text] [Related]
5. Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries. Pei F; Fu A; Ye W; Peng J; Fang X; Wang MS; Zheng N ACS Nano; 2019 Jul; 13(7):8337-8346. PubMed ID: 31287646 [TBL] [Abstract][Full Text] [Related]
6. 3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector. Chen C; Li S; Notten PHL; Zhang Y; Hao Q; Zhang X; Lei W ACS Appl Mater Interfaces; 2021 Jun; 13(21):24785-24794. PubMed ID: 34013732 [TBL] [Abstract][Full Text] [Related]
7. Graphene-Modified 3D Copper Foam Current Collector for Dendrite-Free Lithium Deposition. Yu J; Dang Y; Bai M; Peng J; Zheng D; Zhao J; Li L; Fang Z Front Chem; 2019; 7():748. PubMed ID: 31828058 [TBL] [Abstract][Full Text] [Related]
8. Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium-Sulfur Battery. Kong LL; Zhang Z; Zhang YZ; Liu S; Li GR; Gao XP ACS Appl Mater Interfaces; 2016 Nov; 8(46):31684-31694. PubMed ID: 27805807 [TBL] [Abstract][Full Text] [Related]
9. A high performance lithium-ion-sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode. Zhang T; Hong M; Yang J; Xu Z; Wang J; Guo Y; Liang C Chem Sci; 2018 Dec; 9(47):8829-8835. PubMed ID: 30627400 [TBL] [Abstract][Full Text] [Related]
10. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Yang CP; Yin YX; Zhang SF; Li NW; Guo YG Nat Commun; 2015 Aug; 6():8058. PubMed ID: 26299379 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional sp Ruan C; Yang Z; Nie H; Zhou X; Guo Z; Wang L; Ding X; Chen X; Huang S Nanoscale; 2018 Jun; 10(23):10999-11005. PubMed ID: 29863730 [TBL] [Abstract][Full Text] [Related]
12. Shielding Polysulfide Intermediates by an Organosulfur-Containing Solid Electrolyte Interphase on the Lithium Anode in Lithium-Sulfur Batteries. Wei JY; Zhang XQ; Hou LP; Shi P; Li BQ; Xiao Y; Yan C; Yuan H; Huang JQ Adv Mater; 2020 Sep; 32(37):e2003012. PubMed ID: 32761715 [TBL] [Abstract][Full Text] [Related]
13. Engineering Bifunctional Host Materials of Sulfur and Lithium-Metal Based on Nitrogen-Enriched Polyacrylonitrile for Li-S Batteries. Dai Z; Wang M; Zhang Y; Wang B; Luo H; Zhang X; Wang Q; Zhang Y; Wu H Chemistry; 2020 Jul; 26(40):8784-8793. PubMed ID: 32583913 [TBL] [Abstract][Full Text] [Related]
14. Investigation on the Electrochemical Properties of Antimony Tin Oxide Nanoparticle-Modified Graphene Aerogel as Cathode Matrix in Lithium-Sulfur Battery. Yan Y; Lin J; Chen S; Zhang S; Yang R; Xu Y; Han T J Nanosci Nanotechnol; 2020 Nov; 20(11):7027-7033. PubMed ID: 32604552 [TBL] [Abstract][Full Text] [Related]
15. Process for a Free-Standing and Stable All-Metal Structure for Symmetrical Lithium-Oxygen Batteries. Luo N; Ji GJ; Wang HF; Li F; Liu QC; Xu JJ ACS Nano; 2020 Mar; 14(3):3281-3289. PubMed ID: 32119516 [TBL] [Abstract][Full Text] [Related]
16. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries. Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921 [TBL] [Abstract][Full Text] [Related]
17. MnCo Cao X; Sun Z; Zheng X; Jin C; Tian J; Li X; Yang R ChemSusChem; 2018 Feb; 11(3):574-579. PubMed ID: 29235727 [TBL] [Abstract][Full Text] [Related]
18. Enabling High-Rate and Safe Lithium Ion-Sulfur Batteries by Effective Combination of Sulfur-Copolymer Cathode and Hard-Carbon Anode. Nguyen DT; Hoefling A; Yee M; Nguyen GTH; Theato P; Lee YJ; Song SW ChemSusChem; 2019 Jan; 12(2):480-486. PubMed ID: 30479038 [TBL] [Abstract][Full Text] [Related]
19. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923 [TBL] [Abstract][Full Text] [Related]
20. Self-Formed Protection Layer on a 3D Lithium Metal Anode for Ultrastable Lithium-Sulfur Batteries. Yan X; Zhang H; Huang M; Qu M; Wei Z ChemSusChem; 2019 May; 12(10):2263-2270. PubMed ID: 30802359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]