These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27606262)

  • 1. Validation of Attitude and Heading Reference System and Microsoft Kinect for Continuous Measurement of Cervical Range of Motion Compared to the Optical Motion Capture System.
    Song YS; Yang KY; Youn K; Yoon C; Yeom J; Hwang H; Lee J; Kim K
    Ann Rehabil Med; 2016 Aug; 40(4):568-74. PubMed ID: 27606262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can shoulder range of movement be measured accurately using the Microsoft Kinect sensor plus Medical Interactive Recovery Assistant (MIRA) software?
    Wilson JD; Khan-Perez J; Marley D; Buttress S; Walton M; Li B; Roy B
    J Shoulder Elbow Surg; 2017 Dec; 26(12):e382-e389. PubMed ID: 28865963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability and validity analyzes of Kinect V2 based measurement system for shoulder motions.
    Çubukçu B; Yüzgeç U; Zileli R; Zileli A
    Med Eng Phys; 2020 Feb; 76():20-31. PubMed ID: 31882393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal functional range of motion of the cervical spine during 15 activities of daily living.
    Bible JE; Biswas D; Miller CP; Whang PG; Grauer JN
    J Spinal Disord Tech; 2010 Feb; 23(1):15-21. PubMed ID: 20051924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of Shoulder Range of Motion in Patients with Adhesive Capsulitis Using a Kinect.
    Lee SH; Yoon C; Chung SG; Kim HC; Kwak Y; Park HW; Kim K
    PLoS One; 2015; 10(6):e0129398. PubMed ID: 26107943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Between-session reliability of opto-electronic motion capture in measuring sagittal posture and 3-D ranges of motion of the thoracolumbar spine.
    Mousavi SJ; Tromp R; Swann MC; White AP; Anderson DE
    J Biomech; 2018 Oct; 79():248-252. PubMed ID: 30213648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Kinect V2 for elbow range of motion estimation in people with haemophilia using an angle correction model.
    Mateo F; Carrasco JJ; Aguilar-Rodríguez M; Soria-Olivas E; Bonanad S; Querol F; Pérez-Alenda S
    Haemophilia; 2019 May; 25(3):e165-e173. PubMed ID: 30994246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of an inertial measurement unit for the assessment of range and quality of movement during head and thoracic spine movements.
    Bellosta-López P; Simonsen MB; Palsson TS; Djurtoft C; Hirata RP; Christensen SWM
    Musculoskelet Sci Pract; 2023 Aug; 66():102826. PubMed ID: 37433251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity and reliability of Kinect skeleton for measuring shoulder joint angles: a feasibility study.
    Huber ME; Seitz AL; Leeser M; Sternad D
    Physiotherapy; 2015 Dec; 101(4):389-93. PubMed ID: 26050135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous validation of wearable motion capture system for lower body applications: over single plane range of motion (ROM) and gait activities.
    Mihcin S
    Biomed Tech (Berl); 2022 Jun; 67(3):185-199. PubMed ID: 35575784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability and agreement of Azure Kinect and Kinect v2 depth sensors in the shoulder joint range of motion estimation.
    Özsoy U; Yıldırım Y; Karaşin S; Şekerci R; Süzen LB
    J Shoulder Elbow Surg; 2022 Oct; 31(10):2049-2056. PubMed ID: 35562032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of cervical range of motion using an optical motion capture system: Repeatability and validity.
    Feng M; Liang L; Sun W; Liu GW; Yin X; Han T; Wei X; Zhu L
    Exp Ther Med; 2019 Dec; 18(6):4193-4202. PubMed ID: 31777530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using the Microsoft Kinect™ to assess 3-D shoulder kinematics during computer use.
    Xu X; Robertson M; Chen KB; Lin JH; McGorry RW
    Appl Ergon; 2017 Nov; 65():418-423. PubMed ID: 28395854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study of using a Microsoft Kinect for virtual coaching of wheelchair transfer techniques.
    Hwang S; Tsai CY; Koontz AM
    Biomed Tech (Berl); 2017 May; 62(3):307-313. PubMed ID: 27331305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of electromagnetic tracking technology for measurement of passive cervical range of motion: a pilot study.
    Morphett AL; Crawford CM; Lee D
    J Manipulative Physiol Ther; 2003; 26(3):152-9. PubMed ID: 12704307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes.
    Mjøsund HL; Boyle E; Kjaer P; Mieritz RM; Skallgård T; Kent P
    BMC Musculoskelet Disord; 2017 Mar; 18(1):124. PubMed ID: 28327115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital data acquisition of shoulder range of motion and arm motion smoothness using Kinect v2.
    Zulkarnain RF; Kim GY; Adikrishna A; Hong HP; Kim YJ; Jeon IH
    J Shoulder Elbow Surg; 2017 May; 26(5):895-901. PubMed ID: 28131678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal functional range of motion of the lumbar spine during 15 activities of daily living.
    Bible JE; Biswas D; Miller CP; Whang PG; Grauer JN
    J Spinal Disord Tech; 2010 Apr; 23(2):106-12. PubMed ID: 20065869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [In vivo measurement of three-dimensional motion of the upper cervical spine using CT three-dimensional reconstruction].
    Zhai X; Kang J; Chen X; Dong J; Qiu XW; Ding XA; Liu J; He XJ
    Zhongguo Gu Shang; 2019 Jul; 32(7):658-665. PubMed ID: 31382726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.