These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27606546)

  • 41. Design of novel β-carboline derivatives with pendant 5-bromothienyl and their evaluation as phosphodiesterase-5 inhibitors.
    El-Gamil DS; Ahmed NS; Gary BD; Piazza GA; Engel M; Hartmann RW; Abadi AH
    Arch Pharm (Weinheim); 2013 Jan; 346(1):23-33. PubMed ID: 23307609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of various zinc binding groups on inhibition of histone deacetylases 1-11.
    Madsen AS; Kristensen HM; Lanz G; Olsen CA
    ChemMedChem; 2014 Mar; 9(3):614-26. PubMed ID: 24375963
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pan-HDAC Inhibitors Promote Tau Aggregation by Increasing the Level of Acetylated Tau.
    Jeong H; Shin S; Lee JS; Lee SH; Baik JH; Lim S; Kim YK
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31480543
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and synthesis of orally bioavailable aminopyrrolidinone histone deacetylase 6 inhibitors.
    Lin X; Chen W; Qiu Z; Guo L; Zhu W; Li W; Wang Z; Zhang W; Zhang Z; Rong Y; Zhang M; Yu L; Zhong S; Zhao R; Wu X; Wong JC; Tang G
    J Med Chem; 2015 Mar; 58(6):2809-20. PubMed ID: 25734520
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and biological evaluation of tetrahydro-β-carboline derivatives as highly potent histone deacetylase 6 (HDAC6) inhibitors.
    Leonhardt M; Sellmer A; Krämer OH; Dove S; Elz S; Kraus B; Beyer M; Mahboobi S
    Eur J Med Chem; 2018 May; 152():329-357. PubMed ID: 29738953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 8-(3-chloro-4-methoxybenzyl)-8H-pyrido[2,3-d]pyrimidin-7-one derivatives as potent and selective phosphodiesterase 5 inhibitors.
    Sakamoto T; Koga Y; Hikota M; Matsuki K; Mochida H; Kikkawa K; Fujishige K; Kotera J; Omori K; Morimoto H; Yamada K
    Bioorg Med Chem Lett; 2015 Apr; 25(7):1431-5. PubMed ID: 25754491
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel inhibitors of human histone deacetylases: design, synthesis and bioactivity of 3-alkenoylcoumarines.
    Seidel C; Schnekenburger M; Zwergel C; Gaascht F; Mai A; Dicato M; Kirsch G; Valente S; Diederich M
    Bioorg Med Chem Lett; 2014 Aug; 24(16):3797-801. PubMed ID: 25042254
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and biochemical analysis of 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-N-hydroxy-octanediamides as inhibitors of human histone deacetylases.
    Henkes LM; Haus P; Jäger F; Ludwig J; Meyer-Almes FJ
    Bioorg Med Chem; 2012 Jan; 20(2):985-95. PubMed ID: 22182579
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design and synthesis of novel isoxazole-based HDAC inhibitors.
    Conti P; Tamborini L; Pinto A; Sola L; Ettari R; Mercurio C; De Micheli C
    Eur J Med Chem; 2010 Sep; 45(9):4331-8. PubMed ID: 20637529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design, synthesis, and biological activity of hydroxamic tertiary amines as histone deacetylase inhibitors.
    Terracciano S; Chini MG; Riccio R; Bruno I; Bifulco G
    ChemMedChem; 2012 Apr; 7(4):694-702. PubMed ID: 22278987
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discovery of trisubstituted pyrazolines as a novel scaffold for the development of selective phosphodiesterase 5 inhibitors.
    Abdel-Halim M; Tinsley H; Keeton AB; Weam M; Atta NH; Hammam MA; Hefnawy A; Hartmann RW; Engel M; Piazza GA; Abadi AH
    Bioorg Chem; 2020 Nov; 104():104322. PubMed ID: 33142429
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies?
    Amin SA; Adhikari N; Jha T
    Pharmacol Res; 2017 Aug; 122():8-19. PubMed ID: 28501516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design, synthesis and biological evaluation of tyrosine-based hydroxamic acid analogs as novel histone deacetylases (HDACs) inhibitors.
    Zhang Y; Feng J; Liu C; Fang H; Xu W
    Bioorg Med Chem; 2011 Aug; 19(15):4437-44. PubMed ID: 21733698
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Targeting epigenetic reader and eraser: Rational design, synthesis and in vitro evaluation of dimethylisoxazoles derivatives as BRD4/HDAC dual inhibitors.
    Zhang Z; Hou S; Chen H; Ran T; Jiang F; Bian Y; Zhang D; Zhi Y; Wang L; Zhang L; Li H; Zhang Y; Tang W; Lu T; Chen Y
    Bioorg Med Chem Lett; 2016 Jun; 26(12):2931-2935. PubMed ID: 27142751
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Synthesis and activity of some new histone deacetylases inhibitors].
    Cheng YH; Guo YS; Han HZ; Wang N; Zhang GH; Guo ZR; Wu S
    Yao Xue Xue Bao; 2010 Jun; 45(6):735-41. PubMed ID: 20939182
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Developing selective histone deacetylases (HDACs) inhibitors through ebselen and analogs.
    Wang Y; Wallach J; Duane S; Wang Y; Wu J; Wang J; Adejare A; Ma H
    Drug Des Devel Ther; 2017; 11():1369-1382. PubMed ID: 28496307
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design, synthesis and preliminary bioactivity studies of 1,3,4-thiadiazole hydroxamic acid derivatives as novel histone deacetylase inhibitors.
    Guan P; Sun F; Hou X; Wang F; Yi F; Xu W; Fang H
    Bioorg Med Chem; 2012 Jun; 20(12):3865-72. PubMed ID: 22579621
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Isochemogenic Set of Inhibitors To Define the Therapeutic Potential of Histone Deacetylases in β-Cell Protection.
    Wagner FF; Lundh M; Kaya T; McCarren P; Zhang YL; Chattopadhyay S; Gale JP; Galbo T; Fisher SL; Meier BC; Vetere A; Richardson S; Morgan NG; Christensen DP; Gilbert TJ; Hooker JM; Leroy M; Walpita D; Mandrup-Poulsen T; Wagner BK; Holson EB
    ACS Chem Biol; 2016 Feb; 11(2):363-74. PubMed ID: 26640968
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and Synthesis of Novel Anti-Plasmodial Histone Deacetylase Inhibitors Containing an Alkoxyamide Connecting Unit.
    Alves Avelar LA; Held J; Engel JA; Sureechatchaiyan P; Hansen FK; Hamacher A; Kassack MU; Mordmüller B; Andrews KT; Kurz T
    Arch Pharm (Weinheim); 2017 Apr; 350(3-4):. PubMed ID: 28317157
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and synthesis of furyl/thineyl pyrroloquinolones based on natural alkaloid perlolyrine, lead to the discovery of potent and selective PDE5 inhibitors.
    Zheng H; Li L; Sun B; Gao Y; Song W; Zhao X; Gao Y; Xie Z; Zhang N; Ji J; Yuan H; Lou H
    Eur J Med Chem; 2018 Apr; 150():30-38. PubMed ID: 29505934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.