These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27606591)

  • 1. Acid Activation in Phenyliodine Dicarboxylates: Direct Observation, Structures, and Implications.
    Izquierdo S; Essafi S; Del Rosal I; Vidossich P; Pleixats R; Vallribera A; Ujaque G; Lledós A; Shafir A
    J Am Chem Soc; 2016 Oct; 138(39):12747-12750. PubMed ID: 27606591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel and direct synthesis of alkylated 2,2'-bithiophene derivatives using a combination of hypervalent iodine(III) reagent and BF3.Et2O.
    Tohma H; Iwata M; Maegawa T; Kiyono Y; Maruyama A; Kita Y
    Org Biomol Chem; 2003 May; 1(10):1647-9. PubMed ID: 12926350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Heterocycle-Stabilized Iodanes: From Structure to Reactivity.
    Boelke A; Lork E; Nachtsheim BJ
    Chemistry; 2018 Dec; 24(70):18653-18657. PubMed ID: 30272381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypervalent Iodine-Induced Oxidative Couplings (New Metal-Free Coupling Advances and Their Applications in Natural Product Syntheses).
    Dohi T; Kita Y
    Top Curr Chem; 2016; 373():1-23. PubMed ID: 26920160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen Bonding to Hexafluoroisopropanol Controls the Oxidative Strength of Hypervalent Iodine Reagents.
    Colomer I; Batchelor-McAuley C; Odell B; Donohoe TJ; Compton RG
    J Am Chem Soc; 2016 Jul; 138(28):8855-61. PubMed ID: 27380523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the role of the 3-center-4-electron bond in hypervalent λ(3)-iodanes using the methodology of domain averaged Fermi holes.
    Pinto de Magalhães H; Lüthi HP; Bultinck P
    Phys Chem Chem Phys; 2016 Jan; 18(2):846-56. PubMed ID: 26645933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and Reactivity of Trifluoromethyl Iodonium Salts.
    Brantley JN; Samant AV; Toste FD
    ACS Cent Sci; 2016 May; 2(5):341-50. PubMed ID: 27280169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions promoted by hypervalent iodine reagents and boron Lewis acids.
    Dasgupta A; Thiehoff C; Newman PD; Wirth T; Melen RL
    Org Biomol Chem; 2021 Jun; 19(22):4852-4865. PubMed ID: 34019066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot regioselective synthesis of chromanyl(phenyl)-lambda(3)-iodanes: tandem oxidative cyclization and lambda(3)-iodanation of 3-phenylpropanols.
    Miyamoto K; Hirobe M; Saito M; Shiro M; Ochiai M
    Org Lett; 2007 May; 9(10):1995-8. PubMed ID: 17417863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-free synthesis of 2-oxindoles via PhI(OAc)2-mediated oxidative C–C bond formation.
    Lv J; Zhang-Negrerie D; Deng J; Du Y; Zhao K
    J Org Chem; 2014 Feb; 79(3):1111-9. PubMed ID: 24410404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. λ
    Parida KN; Moorthy JN
    Chemistry; 2023 Jun; 29(34):e202203997. PubMed ID: 36929780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of hydroxy(phenyl)iodonium ions in acidic aqueous solution: preparation, and X-ray crystal structures of oligomeric phenyliodine(III) sulfates.
    Nemykin VN; Koposov AY; Netzel BC; Yusubov MS; Zhdankin VV
    Inorg Chem; 2009 Jun; 48(11):4908-17. PubMed ID: 19382777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypervalent iodine(III)-mediated oxidative decarboxylation of β,γ-unsaturated carboxylic acids.
    Kiyokawa K; Yahata S; Kojima T; Minakata S
    Org Lett; 2014 Sep; 16(17):4646-9. PubMed ID: 25162482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trans and cis influences in hypervalent iodine(III) complexes: a DFT study.
    Sajith PK; Suresh CH
    Inorg Chem; 2013 May; 52(10):6046-54. PubMed ID: 23683291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Hypervalency in Iodanes.
    Stirling A
    Chemistry; 2018 Feb; 24(7):1709-1713. PubMed ID: 29160953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypervalent iodine-mediated Ritter-type amidation of terminal alkenes: The synthesis of isoxazoline and pyrazoline cores.
    Park SW; Kim SH; Song J; Park GY; Kim D; Nam TG; Hong KB
    Beilstein J Org Chem; 2018; 14():1028-1033. PubMed ID: 29977375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PIDA-mediated Oxidative Decarboxylation of Oxamic Acids. The Role of Radical Acidity Enhancement.
    Ogbu IM; Kurtay G; Badufle M; Robert F; Lopez CS; Landais Y
    Chemistry; 2023 Mar; 29(15):e202202963. PubMed ID: 36583591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective carboxylation of reactive benzylic C-H bonds by a hypervalent iodine(III)/inorganic bromide oxidation system.
    Dohi T; Ueda S; Iwasaki K; Tsunoda Y; Morimoto K; Kita Y
    Beilstein J Org Chem; 2018; 14():1087-1094. PubMed ID: 29977380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, Structure, and Reactivity of Pseudocyclic Benziodoxole Tosylates: New Hypervalent Iodine Oxidants and Electrophiles.
    Yoshimura A; Klasen SC; Shea MT; Nguyen KC; Rohde GT; Saito A; Postnikov PS; Yusubov MS; Nemykin VN; Zhdankin VV
    Chemistry; 2017 Jan; 23(3):691-695. PubMed ID: 27794175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary hypervalent I(III)...O interactions: synthesis and structure of hypervalent complexes of diphenyl-lambda3-iodanes with 18-crown-6.
    Ochiai M; Suefuji T; Miyamoto K; Tada N; Goto S; Shiro M; Sakamoto S; Yamaguchi K
    J Am Chem Soc; 2003 Jan; 125(3):769-73. PubMed ID: 12526677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.