These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27606880)

  • 1. New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell.
    Hassan MM; Cheng KY; Ho G; Cord-Ruwisch R
    Biosens Bioelectron; 2017 Jan; 87():531-536. PubMed ID: 27606880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyocyanin-dependent electrochemical inhibition of
    Jiménez Otero F; Newman DK; Tender LM
    mBio; 2023 Aug; 14(4):e0070223. PubMed ID: 37314185
    [No Abstract]   [Full Text] [Related]  

  • 3. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms.
    Saunders SH; Tse ECM; Yates MD; Otero FJ; Trammell SA; Stemp EDA; Barton JK; Tender LM; Newman DK
    Cell; 2020 Aug; 182(4):919-932.e19. PubMed ID: 32763156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms.
    Bellin DL; Sakhtah H; Zhang Y; Price-Whelan A; Dietrich LE; Shepard KL
    Nat Commun; 2016 Jan; 7():10535. PubMed ID: 26813638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells.
    Zhang E; Cai Y; Luo Y; Piao Z
    Can J Microbiol; 2014 Nov; 60(11):753-9. PubMed ID: 25345758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode.
    Jain A; Zhang X; Pastorella G; Connolly JO; Barry N; Woolley R; Krishnamurthy S; Marsili E
    Bioelectrochemistry; 2012 Oct; 87():28-32. PubMed ID: 22281091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing extracellular electron transfer between Pseudomonas aeruginosa PAO1 and light driven semiconducting birnessite.
    Ren G; Sun Y; Ding Y; Lu A; Li Y; Wang C; Ding H
    Bioelectrochemistry; 2018 Oct; 123():233-240. PubMed ID: 29894900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of pyocyanin from Pseudomonas aeruginosa by adsorptive stripping voltammetry.
    Vukomanovic DV; Zoutman DE; Marks GS; Brien JF; van Loon GW; Nakatsu K
    J Pharmacol Toxicol Methods; 1996 Oct; 36(2):97-102. PubMed ID: 8912228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections.
    Alatraktchi FA; Johansen HK; Molin S; Svendsen WE
    Nanomedicine (Lond); 2016 Aug; 11(16):2185-95. PubMed ID: 27464037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eradication of Pseudomonas aeruginosa cells by cathodic electrochemical currents delivered with graphite electrodes.
    Niepa THR; Wang H; Gilbert JL; Ren D
    Acta Biomater; 2017 Mar; 50():344-352. PubMed ID: 28049020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin.
    Yang Y; Yu YY; Wang YZ; Zhang CL; Wang JX; Fang Z; Lv H; Zhong JJ; Yong YC
    Biosens Bioelectron; 2017 Dec; 98():338-344. PubMed ID: 28709085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in electrode redox potential selects for different microorganisms under cathodic current flow from electrodes in marine sediments.
    Lam BR; Rowe AR; Nealson KH
    Environ Microbiol; 2018 Jun; 20(6):2270-2287. PubMed ID: 29786168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial phenazine production enhances electron transfer in biofuel cells.
    Rabaey K; Boon N; Höfte M; Verstraete W
    Environ Sci Technol; 2005 May; 39(9):3401-8. PubMed ID: 15926596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional microbial electron transfer: Switching an acetate oxidizing biofilm to nitrate reducing conditions.
    Pous N; Carmona-Martínez AA; Vilajeliu-Pons A; Fiset E; Bañeras L; Trably E; Balaguer MD; Colprim J; Bernet N; Puig S
    Biosens Bioelectron; 2016 Jan; 75():352-8. PubMed ID: 26339932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1.
    Rengasamy K; Ranaivoarisoa T; Singh R; Bose A
    Bioelectrochemistry; 2018 Aug; 122():164-173. PubMed ID: 29655035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor.
    Yu YY; Wang JX; Si RW; Yang Y; Zhang CL; Yong YC
    Anal Chim Acta; 2017 Sep; 985():148-154. PubMed ID: 28864185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.
    Jia R; Yang D; Xu D; Gu T
    Bioelectrochemistry; 2017 Dec; 118():38-46. PubMed ID: 28715664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical communication between microbial cells and electrodes via osmium redox systems.
    Hasan K; Patil SA; Leech D; Hägerhäll C; Gorton L
    Biochem Soc Trans; 2012 Dec; 40(6):1330-5. PubMed ID: 23176477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D interdigitated electrode array in the microchannel free of reference and counter electrodes.
    Lee D; Lee S; Rho J; Jang W; Han SH; Chung TD
    Biosens Bioelectron; 2018 Mar; 101():317-321. PubMed ID: 29033058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation.
    Das T; Kutty SK; Tavallaie R; Ibugo AI; Panchompoo J; Sehar S; Aldous L; Yeung AW; Thomas SR; Kumar N; Gooding JJ; Manefield M
    Sci Rep; 2015 Feb; 5():8398. PubMed ID: 25669133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.