These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27606954)

  • 1. Statistically Analyzed Photoresponse of Elastically Bent CdS Nanowires Probed by Light-Compatible In Situ High-Resolution TEM.
    Zhang C; Cretu O; Kvashnin DG; Kawamoto N; Mitome M; Wang X; Bando Y; Sorokin PB; Golberg D
    Nano Lett; 2016 Oct; 16(10):6008-6013. PubMed ID: 27606954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core-Shell Nanowires As Revealed by in situ Transmission Electron Microscopy.
    Zhang C; Kvashnin DG; Bourgeois L; Fernando JFS; Firestein K; Sorokin PB; Fukata N; Golberg D
    Nano Lett; 2018 Nov; 18(11):7238-7246. PubMed ID: 30346785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of single crystalline CdS nanowires synthesized by solvothermal method.
    Hadia NM; García-Granda S; García JR
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5449-54. PubMed ID: 24758047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CdS and CdTeS quantum dot decorated TiO2 nanowires. Synthesis and photoefficiency.
    Medina-Gonzalez Y; Xu WZ; Chen B; Farhanghi N; Charpentier PA
    Nanotechnology; 2011 Feb; 22(6):065603. PubMed ID: 21212494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The piezotronic effect of zinc oxide nanowires studied by in situ TEM.
    Yang S; Wang L; Tian X; Xu Z; Wang W; Bai X; Wang E
    Adv Mater; 2012 Sep; 24(34):4676-82. PubMed ID: 22488925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ fabrication and optoelectronic analysis of axial CdS/p-Si nanowire heterojunctions in a high-resolution transmission electron microscope.
    Zhang C; Xu Z; Tian W; Tang DM; Wang X; Bando Y; Fukata N; Golberg D
    Nanotechnology; 2015 Apr; 26(15):154001. PubMed ID: 25797523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.
    El Mel AA; Buffière M; Bouts N; Gautron E; Tessier PY; Henzler K; Guttmann P; Konstantinidis S; Bittencourt C; Snyders R
    Nanotechnology; 2013 Jul; 24(26):265603. PubMed ID: 23732175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible multi-wavelength photodetector based on porous silicon nanowires.
    Kim DH; Lee W; Myoung JM
    Nanoscale; 2018 Sep; 10(37):17705-17711. PubMed ID: 30207348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-Energy Release in Bent Semiconductor Nanowires Occurring by Polygonization or Nanocrack Formation.
    Sun Z; Huang C; Guo J; Dong JT; Klie RF; Lauhon LJ; Seidman DN
    ACS Nano; 2019 Mar; 13(3):3730-3738. PubMed ID: 30807693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-order harmonic resonances and mechanical properties of individual cadmium sulphide nanowires measured by in situ transmission electron microscopy.
    Gao P; Liu K; Liu L; Wang Z; Liao Z; Xu Z; Wang W; Bai X; Wang E; Li Y
    J Electron Microsc (Tokyo); 2010; 59(4):285-9. PubMed ID: 20181725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosensing performance of branched CdS/ZnO heterostructures as revealed by in situ TEM and photodetector tests.
    Zhang C; Tian W; Xu Z; Wang X; Liu J; Li SL; Tang DM; Liu D; Liao M; Bando Y; Golberg D
    Nanoscale; 2014 Jul; 6(14):8084-90. PubMed ID: 24915978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ electron backscattered diffraction of individual GaAs nanowires.
    Prikhodko SV; Sitzman S; Gambin V; Kodambaka S
    Ultramicroscopy; 2008 Dec; 109(1):133-8. PubMed ID: 18996646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bending and Twisting Lattice Tilt in Strained Core-Shell Nanowires Revealed by Nanofocused X-ray Diffraction.
    Wallentin J; Jacobsson D; Osterhoff M; Borgström MT; Salditt T
    Nano Lett; 2017 Jul; 17(7):4143-4150. PubMed ID: 28613907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vapor-liquid-solid synthesis and characterization of alpha-monoclinic selenium nanowires.
    Farfán W; Mosquera E; Vadapoo R; Krishnan S; Marín C
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4846-50. PubMed ID: 19928160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and microstructure of Cd4SiS6/Si composite nanowires.
    Zhan J; Bando Y; Hu J; Golberg D
    J Electron Microsc (Tokyo); 2005 Dec; 54(6):485-91. PubMed ID: 16556623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical CdS Nanowires Based Rigid and Flexible Photodetectors with Ultrahigh Sensitivity.
    Li L; Lou Z; Shen G
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23507-14. PubMed ID: 26439364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and photocurrent of amorphous boron nanowires.
    Ge L; Lei S; Hart AH; Gao G; Jafry H; Vajtai R; Ajayan PM
    Nanotechnology; 2014 Aug; 25(33):335701. PubMed ID: 25061013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanowires Bending over Backward from Strain Partitioning in Asymmetric Core-Shell Heterostructures.
    Lewis RB; Corfdir P; Küpers H; Flissikowski T; Brandt O; Geelhaar L
    Nano Lett; 2018 Apr; 18(4):2343-2350. PubMed ID: 29570304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging and analysis of nanowires.
    Bell DC; Wu Y; Barrelet CJ; Gradecak S; Xiang J; Timko BP; Lieber CM
    Microsc Res Tech; 2004 Aug; 64(5-6):373-89. PubMed ID: 15549698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO2 nanowires grown from nanoparticles: structure and charge density study.
    Mohanty P; Saravanakumar S; Saravanan R; Rath C
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6672-8. PubMed ID: 24245128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.