These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27606971)

  • 1. Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface.
    Wang SF; Kudo T; Yuyama KI; Sugiyama T; Masuhara H
    Langmuir; 2016 Nov; 32(47):12488-12496. PubMed ID: 27606971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Force-Induced Chemistry at Solution Surfaces.
    Masuhara H; Yuyama KI
    Annu Rev Phys Chem; 2021 Apr; 72():565-589. PubMed ID: 33567878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalously Large Assembly Formation of Polystyrene Nanoparticles by Optical Trapping at the Solution Surface.
    Wu CL; Wang SF; Kudo T; Yuyama KI; Sugiyama T; Masuhara H
    Langmuir; 2020 Dec; 36(47):14234-14242. PubMed ID: 33197315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation.
    Kudo T; Wang SF; Yuyama K; Masuhara H
    Nano Lett; 2016 May; 16(5):3058-62. PubMed ID: 27104966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocontrolled Supramolecular Assembling of Azobenzene-Based Biscalix[4]arenes upon Starting and Stopping Laser Trapping.
    Yuyama KI; Marcelis L; Su PM; Chung WS; Masuhara H
    Langmuir; 2017 Jan; 33(3):755-763. PubMed ID: 28033013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Submillimeter Assembly of Microparticles with Necklace-like Patterns Formed by Laser Trapping at Solution Surface.
    Lu JS; Wang HY; Kudo T; Masuhara H
    J Phys Chem Lett; 2020 Aug; 11(15):6057-6062. PubMed ID: 32658483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle Assembling Dynamics Induced by Pulsed Optical Force.
    Jui-Kai Chen J; Chiang WY; Kudo T; Usman A; Masuhara H
    Chem Rec; 2021 Jun; 21(6):1473-1488. PubMed ID: 33661570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Single Large Assembly with Dynamically Fluctuating Swarms of Gold Nanoparticles Formed by Trapping Laser.
    Kudo T; Yang SJ; Masuhara H
    Nano Lett; 2018 Sep; 18(9):5846-5853. PubMed ID: 30071730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy.
    Hosokawa C; Yoshikawa H; Masuhara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021408. PubMed ID: 16196566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser trapping chemistry: from polymer assembly to amino acid crystallization.
    Sugiyama T; Yuyama K; Masuhara H
    Acc Chem Res; 2012 Nov; 45(11):1946-54. PubMed ID: 23094993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of optically directed self-assembly of nanoparticles.
    Roy D; Mondal D; Goswami D
    Sci Rep; 2016 Mar; 6():23318. PubMed ID: 27006305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser Trapping and Crystallization Dynamics of l-Phenylalanine at Solution Surface.
    Yuyama K; Sugiyama T; Masuhara H
    J Phys Chem Lett; 2013 Aug; 4(15):2436-40. PubMed ID: 26704424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection.
    Hosokawa C; Yoshikawa H; Masuhara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061410. PubMed ID: 15697365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticles at an interface.
    Huang CH; Kudo T; BresolĂ­-Obach R; Hofkens J; Sugiyama T; Masuhara H
    Opt Express; 2020 Sep; 28(19):27727-27735. PubMed ID: 32988060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential energy profile of colloidal nanoparticles in optical confinement.
    Fu J; Zhan Q; Lim MY; Li Z; Ou-Yang HD
    Opt Lett; 2013 Oct; 38(20):3995-8. PubMed ID: 24321903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bragg scattering and Brownian motion dynamics in optically induced crystals of submicron particles.
    Sapiro RE; Slama BN; Raithel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052311. PubMed ID: 23767544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whirl-enhanced continuous wave laser trapping of particles.
    Bartkiewicz S; Miniewicz A
    Phys Chem Chem Phys; 2015 Jan; 17(2):1077-83. PubMed ID: 25412568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Coupling Dynamics of Silver Nanoparticles in an Optical Trap.
    Blattmann M; Rohrbach A
    Nano Lett; 2015 Dec; 15(12):7816-21. PubMed ID: 26605492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The primeval optical evolving matter by optical binding inside and outside the photon beam.
    Huang CH; Louis B; BresolĂ­-Obach R; Kudo T; Camacho R; Scheblykin IG; Sugiyama T; Hofkens J; Masuhara H
    Nat Commun; 2022 Sep; 13(1):5325. PubMed ID: 36088393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and fragmentation of silver nanoparticles in their synthesis with a fs laser and CW light by photo-sensitization with benzophenone.
    Eustis S; Krylova G; Eremenko A; Smirnova N; Schill AW; El-Sayed M
    Photochem Photobiol Sci; 2005 Jan; 4(1):154-9. PubMed ID: 15616707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.