These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 27607242)
1. Integrating Domain Specific Knowledge and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines. Kim S; Sundaresan V; Zhou L; Kahveci T PLoS One; 2016; 11(9):e0162173. PubMed ID: 27607242 [TBL] [Abstract][Full Text] [Related]
2. Predicting breast cancer drug response using a multiple-layer cell line drug response network model. Huang S; Hu P; Lakowski TM BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012 [TBL] [Abstract][Full Text] [Related]
3. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. Wang L; Li X; Zhang L; Gao Q BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489 [TBL] [Abstract][Full Text] [Related]
4. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods. Pouryahya M; Oh JH; Mathews JC; Belkhatir Z; Moosmüller C; Deasy JO; Tannenbaum AR Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163005 [TBL] [Abstract][Full Text] [Related]
5. Induction of apoptosis and suppression of ERCC1 expression by the potent amonafide analogue 8-c in human colorectal carcinoma cells. Wang Z; Liang X; Cheng Z; Xu Y; Yin P; Zhu H; Li Q; Qian X; Liu J Anticancer Drugs; 2013 Apr; 24(4):355-65. PubMed ID: 23426174 [TBL] [Abstract][Full Text] [Related]
6. Clinical Drug Response Prediction by Using a Lq Penalized Network-Constrained Logistic Regression Method. Huang HH; Dai JG; Liang Y Cell Physiol Biochem; 2018; 51(5):2073-2084. PubMed ID: 30522095 [TBL] [Abstract][Full Text] [Related]
7. A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Zhang F; Wang M; Xi J; Yang J; Li A Sci Rep; 2018 Feb; 8(1):3355. PubMed ID: 29463808 [TBL] [Abstract][Full Text] [Related]
8. Predicting cancer drug response by proteomic profiling. Ma Y; Ding Z; Qian Y; Shi X; Castranova V; Harner EJ; Guo L Clin Cancer Res; 2006 Aug; 12(15):4583-9. PubMed ID: 16899605 [TBL] [Abstract][Full Text] [Related]
9. Identifying anti-cancer drug response related genes using an integrative analysis of transcriptomic and genomic variations with cell line-based drug perturbations. Sun Y; Zhang W; Chen Y; Ma Q; Wei J; Liu Q Oncotarget; 2016 Feb; 7(8):9404-19. PubMed ID: 26824188 [TBL] [Abstract][Full Text] [Related]
10. Prediction of clinical response to drugs in ovarian cancer using the chemotherapy resistance test (CTR-test). Kischkel FC; Meyer C; Eich J; Nassir M; Mentze M; Braicu I; Kopp-Schneider A; Sehouli J J Ovarian Res; 2017 Oct; 10(1):72. PubMed ID: 29078793 [TBL] [Abstract][Full Text] [Related]
11. A link prediction approach to cancer drug sensitivity prediction. Turki T; Wei Z BMC Syst Biol; 2017 Oct; 11(Suppl 5):94. PubMed ID: 28984192 [TBL] [Abstract][Full Text] [Related]
12. Dual-Layer Strengthened Collaborative Topic Regression Modeling for Predicting Drug Sensitivity. Wang H; Xi J; Wang M; Li A IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):587-598. PubMed ID: 30106738 [TBL] [Abstract][Full Text] [Related]
13. Knowledge-guided gene prioritization reveals new insights into the mechanisms of chemoresistance. Emad A; Cairns J; Kalari KR; Wang L; Sinha S Genome Biol; 2017 Aug; 18(1):153. PubMed ID: 28800781 [TBL] [Abstract][Full Text] [Related]
14. miR-218 targets survivin and regulates resistance to chemotherapeutics in breast cancer. Hu Y; Xu K; Yagüe E Breast Cancer Res Treat; 2015 Jun; 151(2):269-80. PubMed ID: 25900794 [TBL] [Abstract][Full Text] [Related]
15. Prediction of anti-cancer drug response by kernelized multi-task learning. Tan M Artif Intell Med; 2016 Oct; 73():70-77. PubMed ID: 27926382 [TBL] [Abstract][Full Text] [Related]
16. DeSigN: connecting gene expression with therapeutics for drug repurposing and development. Lee BK; Tiong KH; Chang JK; Liew CS; Abdul Rahman ZA; Tan AC; Khang TF; Cheong SC BMC Genomics; 2017 Jan; 18(Suppl 1):934. PubMed ID: 28198666 [TBL] [Abstract][Full Text] [Related]
17. Predicting response to multidrug regimens in cancer patients using cell line experiments and regularised regression models. Falgreen S; Dybkær K; Young KH; Xu-Monette ZY; El-Galaly TC; Laursen MB; Bødker JS; Kjeldsen MK; Schmitz A; Nyegaard M; Johnsen HE; Bøgsted M BMC Cancer; 2015 Apr; 15():235. PubMed ID: 25881228 [TBL] [Abstract][Full Text] [Related]
18. [Construction and analysis of a breast cancer gene-drug network model]. Wei X; Hu DH; Yi MH; Chang XL; Zhu WJ; Qu SL; Deng DY Nan Fang Yi Ke Da Xue Xue Bao; 2016 Feb; 36(2):170-9. PubMed ID: 26922011 [TBL] [Abstract][Full Text] [Related]
19. A new approach for prediction of tumor sensitivity to targeted drugs based on functional data. Berlow N; Davis LE; Cantor EL; Séguin B; Keller C; Pal R BMC Bioinformatics; 2013 Jul; 14():239. PubMed ID: 23890326 [TBL] [Abstract][Full Text] [Related]
20. Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival. Györffy B; Serra V; Jürchott K; Abdul-Ghani R; Garber M; Stein U; Petersen I; Lage H; Dietel M; Schäfer R Oncogene; 2005 Nov; 24(51):7542-51. PubMed ID: 16044152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]