These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27607291)

  • 21. Glued diffraction optical elements with broadband and a large field of view.
    Yang H; Xue C; Xiao J; Chen J
    Appl Opt; 2020 Nov; 59(33):10217-10223. PubMed ID: 33361949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thickness optimization algorithm to improve multilayer diffractive optical elements performance.
    Laborde V; Loicq J; Hastanin J; Habraken S
    Appl Opt; 2023 Jan; 62(3):836-843. PubMed ID: 36821291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design.
    Mellin S; Nordin G
    Opt Express; 2001 Jun; 8(13):705-22. PubMed ID: 19421262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis.
    Glytsis EN
    J Opt Soc Am A Opt Image Sci Vis; 2002 Apr; 19(4):702-15. PubMed ID: 11934163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multilayer diffractive optical element material selection method based on transmission, total internal reflection, and thickness.
    Laborde V; Loicq J; Hastanin J; Habraken S
    Appl Opt; 2022 Sep; 61(25):7415-7423. PubMed ID: 36256043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal design of a multilayer diffractive optical element for dual wavebands.
    Xue C; Cui Q; Liu T; Yang L; Fei B
    Opt Lett; 2010 Dec; 35(24):4157-9. PubMed ID: 21165122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate material selection method for multilayer diffractive optics in a wide environmental temperature range.
    Piao M; Cui Q; Zhao C; Zhang B; Mao S; Zhao Y; Zhao L
    Appl Opt; 2017 Apr; 56(10):2826-2833. PubMed ID: 28375249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation.
    Glytsis EN; Harrigan ME; Hirayama K; Gaylord TK
    Appl Opt; 1998 Jan; 37(1):34-43. PubMed ID: 18268557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling infrared behavior of multilayer diffractive optical elements using Fourier optics.
    Laborde V; Loicq J; Habraken S
    Appl Opt; 2021 Mar; 60(7):2037-2045. PubMed ID: 33690296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm.
    Di F; Yingbai Y; Guofan J; Qiaofeng T; Liu H
    J Opt Soc Am A Opt Image Sci Vis; 2003 Sep; 20(9):1739-46. PubMed ID: 12968646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and optimization of broadband wide-angle antireflection structures for binary diffractive optics.
    Chang CH; Waller L; Barbastathis G
    Opt Lett; 2010 Apr; 35(7):907-9. PubMed ID: 20364165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validity of scalar diffraction theory and effective medium theory for analysis of a blazed grating microstructure at oblique incidence.
    Ruan D; Zhu L; Jing X; Tian Y; Wang L; Jin S
    Appl Opt; 2014 Apr; 53(11):2357-65. PubMed ID: 24787405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electromagnetic analysis of axially symmetric diffractive optical elements illuminated by oblique incident plane waves.
    Shi S; Prather DW
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2901-7. PubMed ID: 11688880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Limits of scalar diffraction theory for conducting gratings.
    Gremaux DA; Gallagher NC
    Appl Opt; 1993 Apr; 32(11):1948-53. PubMed ID: 20820328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling of the angular tolerancing of an effective medium diffractive lens using combined finite difference time domain and radiation spectrum method algorithms.
    Raulot V; GĂ©rard P; Serio B; Flury M; Kress B; Meyrueis P
    Opt Express; 2010 Aug; 18(17):17974-82. PubMed ID: 20721184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A rigorous unidirectional method for designing finite aperture diffractive optical elements.
    Jiang J; Nordin G
    Opt Express; 2000 Sep; 7(6):237-42. PubMed ID: 19407871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmittance analysis of diffraction phase grating.
    Jing X; Jin Y
    Appl Opt; 2011 Mar; 50(9):C11-8. PubMed ID: 21460923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings.
    Tervo J; Turunen J
    Opt Lett; 2000 Jun; 25(11):785-6. PubMed ID: 18064183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient optimization of diffractive optical elements based on rigorous diffraction models.
    Testorf ME; Fiddy MA
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2908-14. PubMed ID: 11688881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blazed-binary diffractive elements with periods much larger than the wavelength.
    Lee MS; Lalanne P; Chavel P
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jul; 17(7):1250-5. PubMed ID: 10883977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.