These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 27607304)

  • 1. Effects of age and physical activity status on redistribution of joint work during walking.
    Buddhadev HH; Martin PE
    Gait Posture; 2016 Oct; 50():131-136. PubMed ID: 27607304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of age, speed, and step length on lower extremity net joint moments and powers during walking.
    Buddhadev HH; Smiley AL; Martin PE
    Hum Mov Sci; 2020 Jun; 71():102611. PubMed ID: 32452428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redistribution of joint moments and work in older women with and without hallux valgus at two walking speeds.
    Buddhadev HH; Barbee CE
    Gait Posture; 2020 Mar; 77():112-117. PubMed ID: 32028077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking.
    Whittington B; Silder A; Heiderscheit B; Thelen DG
    Gait Posture; 2008 May; 27(4):628-34. PubMed ID: 17928228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age causes a redistribution of joint torques and powers during gait.
    DeVita P; Hortobagyi T
    J Appl Physiol (1985); 2000 May; 88(5):1804-11. PubMed ID: 10797145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of load carriage and footwear on lower extremity kinetics and kinematics during overground walking.
    Dames KD; Smith JD
    Gait Posture; 2016 Oct; 50():207-211. PubMed ID: 27649512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of age on lower extremity joint kinematics and kinetics during level walking with Masai barefoot technology shoes.
    Buchecker M; Lindinger S; Pfusterschmied J; Müller E
    Eur J Phys Rehabil Med; 2013 Oct; 49(5):675-86. PubMed ID: 23792632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower-limb coordination and variability during gait: The effects of age and walking surface.
    Ippersiel P; Robbins SM; Dixon PC
    Gait Posture; 2021 Mar; 85():251-257. PubMed ID: 33626449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-associated changes in lower limb weight-bearing strategy during walking.
    Foroughi F; Prible D; Hsiao HY
    Gait Posture; 2024 Jan; 107():162-168. PubMed ID: 37827929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced age and the mechanics of uphill walking: a joint-level, inverse dynamic analysis.
    Franz JR; Kram R
    Gait Posture; 2014 Jan; 39(1):135-40. PubMed ID: 23850328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower extremity joint coupling variability during gait in young adults with and without chronic ankle instability.
    Lilley T; Herb CC; Hart J; Hertel J
    Sports Biomech; 2018 Jun; 17(2):261-272. PubMed ID: 28610477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.
    James DC; Farmer LJ; Sayers JB; Cook DP; Mileva KN
    Clin Biomech (Bristol, Avon); 2015 May; 30(4):347-54. PubMed ID: 25823902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redistribution of intra- and inter-limb support moments during downhill walking on different slopes.
    Hong SW; Wang TM; Lu TW; Li JD; Leu TH; Ho WP
    J Biomech; 2014 Feb; 47(3):709-15. PubMed ID: 24398165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of walking speed on lower-extremity joint powers among elderly adults who exhibit low physical performance.
    Graf A; Judge JO; Ounpuu S; Thelen DG
    Arch Phys Med Rehabil; 2005 Nov; 86(11):2177-83. PubMed ID: 16271567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical analysis of rollator walking.
    Alkjaer T; Larsen PK; Pedersen G; Nielsen LH; Simonsen EB
    Biomed Eng Online; 2006 Jan; 5():2. PubMed ID: 16398933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic review and meta-analysis of gait mechanics in young and older adults.
    Boyer KA; Johnson RT; Banks JJ; Jewell C; Hafer JF
    Exp Gerontol; 2017 Sep; 95():63-70. PubMed ID: 28499954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.