These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27607518)

  • 1. Polymerization under Hypersaline Conditions: A Robust Route to Phenolic Polymer-Derived Carbon Aerogels.
    Yu ZL; Li GC; Fechler N; Yang N; Ma ZY; Wang X; Antonietti M; Yu SH
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14623-14627. PubMed ID: 27607518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolithic carbon aerogels within foam framework for high-temperature thermal insulation and organics absorption.
    Wu K; Cao J; Qian Z; Luo Y; Niu B; Zhang Y; Long D
    J Colloid Interface Sci; 2022 Jul; 618():259-269. PubMed ID: 35339962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.
    Sánchez-Polo M; Rivera-Utrilla J; Salhi E; von Gunten U
    J Colloid Interface Sci; 2006 Aug; 300(1):437-41. PubMed ID: 16696995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Foaming Coupled Self-Etching: A Multiscale Processing Strategy for Ultrahigh-Surface-Area Carbon Aerogels.
    Qi F; Xia Z; Jin J; Fu X; Wei W; Wang S; Sun G
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2819-2827. PubMed ID: 29227086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Mesopore Volume and Thermal Insulation of Silica Aerogel via Ambient Pressure Drying-Assisted Foaming Method.
    Guo J; Luo K; Zou W; Xu J; Guo B
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic solvents-free and ambient-pressure drying melamine formaldehyde resin aerogels with homogeneous structures, outstanding mechanical strength and flame retardancy.
    Wang T; Xu J; Zhan YJ; He L; Fu ZC; Deng JN; An WL; Zhao HB; Chen MJ
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):132811. PubMed ID: 38825282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and properties of phloroglucinol-phenol-formaldehyde carbon aerogels and xerogels.
    Jirglová H; Pérez-Cadenas AF; Maldonado-Hódar FJ
    Langmuir; 2009 Feb; 25(4):2461-6. PubMed ID: 19199717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu-doped resorcinol-formaldehyde (RF) polymer and carbon aerogels.
    Czakkel O; Geissler E; Szilágyi IM; Székely E; László K
    J Colloid Interface Sci; 2009 Sep; 337(2):513-22. PubMed ID: 19560155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter- and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents.
    Fairén-Jiménez D; Carrasco-Marín F; Moreno-Castilla C
    Langmuir; 2008 Mar; 24(6):2820-5. PubMed ID: 18257593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling the microstructure of resorcinol-furfural aerogels and derived carbon aerogels
    Zhang H; Feng J; Li L; Jiang Y; Feng J
    RSC Adv; 2019 Feb; 9(11):5967-5977. PubMed ID: 35517275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh-strength carbon aerogels for high temperature thermal insulation.
    Wu K; Zhou Q; Cao J; Qian Z; Niu B; Long D
    J Colloid Interface Sci; 2022 Mar; 609():667-675. PubMed ID: 34823850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular adsorption behavior on spherical carbon aerogels with various mesopore sizes.
    Long D; Zhang R; Qiao W; Zhang L; Liang X; Ling L
    J Colloid Interface Sci; 2009 Mar; 331(1):40-6. PubMed ID: 19062032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions.
    Moreno-Castilla C
    Adv Colloid Interface Sci; 2016 Oct; 236():113-41. PubMed ID: 27530712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen self-doped carbon aerogels derived from trifunctional benzoxazine monomers as ultralight supercapacitor electrodes.
    Zhang M; Chen M; Reddeppa N; Xu D; Jing Q; Zha R
    Nanoscale; 2018 Apr; 10(14):6549-6557. PubMed ID: 29577146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels.
    Fu R; Baumann TF; Cronin S; Dresselhaus G; Dresselhaus MS; Satcher JH
    Langmuir; 2005 Mar; 21(7):2647-51. PubMed ID: 15779927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of activated carbon foam from phenolic resin.
    Zhao X; Lai S; Liu H; Gao L
    J Environ Sci (China); 2009; 21 Suppl 1():S121-3. PubMed ID: 25084407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the physical properties and biocompatibility of polybenzoxazine-based aerogels for use as a novel hard-tissue scaffold.
    Rubenstein DA; Lu H; Mahadik SS; Leventis N; Yin W
    J Biomater Sci Polym Ed; 2012; 23(9):1171-84. PubMed ID: 21619731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on Thermal Conductivities of Aromatic Polyimide Aerogels.
    Feng J; Wang X; Jiang Y; Du D; Feng J
    ACS Appl Mater Interfaces; 2016 May; 8(20):12992-6. PubMed ID: 27149155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic studies of tannin-formaldehyde aerogels: preparation and properties.
    Amaral-Labat G; Szczurek A; Fierro V; Pizzi A; Celzard A
    Sci Technol Adv Mater; 2013 Feb; 14(1):015001. PubMed ID: 27877559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of lignin-derived carbon aerogels.
    Jõul P; Järvik O; Lees H; Kallavus U; Koel M; Lukk T
    Front Chem; 2023; 11():1326454. PubMed ID: 38260044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.