These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27607608)

  • 1. Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure.
    Zhang L; Tang L; Wei W; Cheng X; Wang W; Zhang H
    Opt Express; 2016 Sep; 24(18):20002-9. PubMed ID: 27607608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons.
    Lu H; Gan X; Jia B; Mao D; Zhao J
    Opt Lett; 2016 Oct; 41(20):4743-4746. PubMed ID: 28005882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong tunable absorption enhancement in graphene using dielectric-metal core-shell resonators.
    Wan M; Li Y; Chen J; Wu W; Chen Z; Wang Z; Wang H
    Sci Rep; 2017 Feb; 7(1):32. PubMed ID: 28196968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene plasmonics for surface enhancement near-infrared absorptivity.
    Pan Q; Hong J; Zhang G; Shuai Y; Tan H
    Opt Express; 2017 Jul; 25(14):16400-16408. PubMed ID: 28789144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy.
    Wei W; Chen N; Nong J; Lan G; Wang W; Yi J; Tang L
    Opt Express; 2018 Jun; 26(13):16903-16916. PubMed ID: 30119509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial.
    Qing YM; Ma HF; Ren YZ; Yu S; Cui TJ
    Opt Express; 2019 Feb; 27(4):5253-5263. PubMed ID: 30876126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-multiband absorption enhancement of graphene in a metal-dielectric-graphene sandwich structure covering terahertz to mid-infrared regime.
    Wang Z; Hou Y
    Opt Express; 2017 Aug; 25(16):19185-19194. PubMed ID: 29041112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna.
    Ullah Z; Nawi I; Witjaksono G; Tansu N; Khattak MI; Junaid M; Siddiqui MA; Magsi SA
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-broadband and completely modulated absorption enhancement of monolayer graphene in a near-infrared region.
    Yan Z; Kong L; Tang C; Deng J; Gu P; Chen J; Wang X; Yi Z; Zhu M
    Opt Express; 2022 Sep; 30(19):34787-34796. PubMed ID: 36242483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure.
    Zhou J; Yan S; Li C; Zhu J; Liu QH
    Opt Express; 2018 Jul; 26(14):18155-18163. PubMed ID: 30114095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient narrow-band absorption of a graphene-based Fabry-Perot structure at telecommunication wavelengths.
    Zhou K; Cheng Q; Song J; Lu L; Luo Z
    Opt Lett; 2019 Jul; 44(14):3430-3433. PubMed ID: 31305540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-independent absorption enhancement in a graphene square array with a cascaded grating structure.
    Wu J
    J Synchrotron Radiat; 2018 Mar; 25(Pt 2):419-424. PubMed ID: 29488921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate.
    Chen L; Zhang T; Li X; Wang G
    Opt Express; 2013 Nov; 21(23):28628-37. PubMed ID: 24514374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials.
    Liu Y; Zhong R; Huang J; Lv Y; Han C; Liu S
    Opt Express; 2019 Mar; 27(5):7393-7404. PubMed ID: 30876304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance.
    Jiang X; Wang T; Xiao S; Yan X; Cheng L
    Opt Express; 2017 Oct; 25(22):27028-27036. PubMed ID: 29092184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolayer-graphene-based broadband and wide-angle perfect absorption structures in the near infrared.
    Fan Y; Guo C; Zhu Z; Xu W; Wu F; Yuan X; Qin S
    Sci Rep; 2018 Sep; 8(1):13709. PubMed ID: 30209289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared absorbers based on the heterostructures of two-dimensional materials.
    Davoodi F; Granpayeh N
    Appl Opt; 2018 Feb; 57(6):1358-1366. PubMed ID: 29469834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials.
    Liu B; Tang C; Chen J; Xie N; Tang H; Zhu X; Park GS
    Nanoscale Res Lett; 2018 May; 13(1):153. PubMed ID: 29767294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector.
    Goldflam MD; Fei Z; Ruiz I; Howell SW; Davids PS; Peters DW; Beechem TE
    Opt Express; 2017 May; 25(11):12400-12408. PubMed ID: 28786595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene.
    Argyropoulos C
    Opt Express; 2015 Sep; 23(18):23787-97. PubMed ID: 26368472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.