BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27607674)

  • 1. Characterizing the phytoplankton soup: pump and plumbing effects on the particle assemblage in underway optical seawater systems.
    Cetinić I; Poulton N; Slade WH
    Opt Express; 2016 Sep; 24(18):20703-15. PubMed ID: 27607674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High latitude Southern Ocean phytoplankton have distinctive bio-optical properties.
    Robinson CM; Huot Y; Schuback N; Ryan-Keogh TJ; Thomalla SJ; Antoine D
    Opt Express; 2021 Jul; 29(14):21084-21112. PubMed ID: 34265904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton.
    Martinez E; Antoine D; D'Ortenzio F; Gentili B
    Science; 2009 Nov; 326(5957):1253-6. PubMed ID: 19965473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oceanic Rossby waves acting as a "hay rake" for ecosystem floating by-products.
    Dandonneau Y; Vega A; Loisel H; du Penhoat Y; Menkes C
    Science; 2003 Nov; 302(5650):1548-51. PubMed ID: 14645844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocean science. The many shades of ocean blue.
    Claustre H; Maritorena S
    Science; 2003 Nov; 302(5650):1514-5. PubMed ID: 14645833
    [No Abstract]   [Full Text] [Related]  

  • 6. Novel method for quantifying the cell size of marine phytoplankton based on optical measurements.
    Lin J; Cao W; Zhou W; Sun Z; Xu Z; Wang G; Hu S
    Opt Express; 2014 May; 22(9):10467-76. PubMed ID: 24921748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxic thresholds of cadmium and lead to oceanic phytoplankton: cell size and ocean basin-dependent effects.
    Echeveste P; Agustí S; Tovar-Sánchez A
    Environ Toxicol Chem; 2012 Aug; 31(8):1887-94. PubMed ID: 22619131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores.
    Balch WM
    Ann Rev Mar Sci; 2018 Jan; 10():71-98. PubMed ID: 29298138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrieval of phytoplankton size from bio-optical measurements: theory and applications.
    Roy S; Sathyendranath S; Platt T
    J R Soc Interface; 2011 May; 8(58):650-60. PubMed ID: 21084343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate.
    Dierssen HM
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17073-8. PubMed ID: 20861445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polychlorinated biphenyls, hexachlorocyclohexanes and hexachlorobenzene in seawater and phytoplankton from the Southern Ocean (Weddell, South Scotia, and Bellingshausen Seas).
    Galbán-Malagón CJ; Del Vento S; Berrojalbiz N; Ojeda MJ; Dachs J
    Environ Sci Technol; 2013 Jun; 47(11):5578-87. PubMed ID: 23627767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconciling models of primary production and photoacclimation [Invited].
    Sathyendranath S; Platt T; Kovač Ž; Dingle J; Jackson T; Brewin RJW; Franks P; Marañón E; Kulk G; Bouman HA
    Appl Opt; 2020 Apr; 59(10):C100-C114. PubMed ID: 32400614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Under the hood of satellite empirical chlorophyll a algorithms: revealing the dependencies of maximum band ratio algorithms on inherent optical properties.
    Sauer MJ; Roesler CS; Werdell PJ; Barnard A
    Opt Express; 2012 Sep; 20(19):20920-33. PubMed ID: 23037216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches.
    Evers-King H; Bernard S; Robertson Lain L; Probyn TA
    Opt Express; 2014 May; 22(10):11536-51. PubMed ID: 24921275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributions of phytoplankton carbohydrate, protein and lipid in the world oceans from satellite ocean colour.
    Roy S
    ISME J; 2018 Jun; 12(6):1457-1472. PubMed ID: 29434313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of ocean phytoplankton diversity on phosphate uptake.
    Lomas MW; Bonachela JA; Levin SA; Martiny AC
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17540-5. PubMed ID: 25422472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertical structure in chlorophyll profiles: influence on primary production in the Arctic Ocean.
    Bouman HA; Jackson T; Sathyendranath S; Platt T
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190351. PubMed ID: 32862808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis.
    Siegel DA; Doney SC; Yoder JA
    Science; 2002 Apr; 296(5568):730-3. PubMed ID: 11976453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Submesoscale Physics on Primary Productivity of Plankton.
    Mahadevan A
    Ann Rev Mar Sci; 2016; 8():161-84. PubMed ID: 26394203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex seasonal patterns of primary producers at the land-sea interface.
    Cloern JE; Jassby AD
    Ecol Lett; 2008 Dec; 11(12):1294-303. PubMed ID: 18793308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.