These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 27607695)

  • 1. Advanced optical interference filters based on metal and dielectric layers.
    Begou T; Lemarchand F; Lumeau J
    Opt Express; 2016 Sep; 24(18):20925-37. PubMed ID: 27607695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal/dielectric transmission interference filters with low reflectance. 2. Experimental results.
    Sullivan BT; Byrt KL
    Appl Opt; 1995 Sep; 34(25):5684-94. PubMed ID: 21060398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband transmission filters from the 2013 Optical Interference Coatings manufacturing problem contest [invited].
    Li L; Dobrowolski JA; Jacobson M; Cooksey C
    Appl Opt; 2014 Feb; 53(4):A248-58. PubMed ID: 24514223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2019 Topical Meeting on Optical Interference Coatings: Manufacturing Problem Contest [invited].
    Poitras D; Li L; Jacobson MR; Cooksey CC
    Appl Opt; 2020 Feb; 59(5):A31-A39. PubMed ID: 32225350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2010 topical meeting on optical interference coatings: manufacturing problem.
    Dobrowolski JA; Li L; Jacobson M; Allen DW
    Appl Opt; 2011 Mar; 50(9):C408-19. PubMed ID: 21460973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2022 Optical Interference Coatings Conference: Manufacturing Problem Contest [Invited].
    Poitras D; Ma P; Jacobson MR; Cooksey CC; Sandilands LJ; Lee S
    Appl Opt; 2023 Mar; 62(7):B104-B111. PubMed ID: 37132893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacturing problem contest [invited].
    Poitras D; Li L; Jacobson M; Cooksey C
    Appl Opt; 2017 Feb; 56(4):C1-C10. PubMed ID: 28158043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topical meeting on optical interference coatings (OIC'2001): design contest results.
    Thelen A; Tilsch M; Tikhonravov AV; Trubetskov MK; Brauneck U
    Appl Opt; 2002 Jun; 41(16):3022-38. PubMed ID: 12064378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of artificially stacked ultrathin ZnS/MgF2 multilayer dielectric optical filters.
    Kedawat G; Srivastava S; Jain VK; Kumar P; Kataria V; Agrawal Y; Gupta BK; Vijay YK
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4872-7. PubMed ID: 23716485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilayer interference filters with narrow stop bands.
    Young L
    Appl Opt; 1967 Feb; 6(2):297-315. PubMed ID: 20057744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures.
    Hosseini A; Massoud Y
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):221-4. PubMed ID: 17164863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of optical interference filters utilizing tunable refractive index layers.
    Poxson DJ; Mont FW; Schubert MF; Kim JK; Cho J; Schubert EF
    Opt Express; 2010 Nov; 18 Suppl 4():A594-9. PubMed ID: 21165093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual dielectric cap gold nanoslits array optical resonance filter with large figure-of-merit.
    He R; Chen C; Zhang R; Chen L; Guo J
    Opt Express; 2020 Oct; 28(22):32456-32467. PubMed ID: 33114931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of optical bandpass filters based on a two-material multilayer structure.
    Belyaev BA; Tyurnev VV; Shabanov VF
    Opt Lett; 2014 Jun; 39(12):3512-5. PubMed ID: 24978524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable deposition of induced transmission filters with a single metal layer.
    Sytchkova A
    Appl Opt; 2011 Mar; 50(9):C90-4. PubMed ID: 21460988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and fabrication of far ultraviolet filters based on π-multilayer technology in high-k materials.
    Wang XD; Chen B; Wang HF; He F; Zheng X; He LP; Chen B; Liu SJ; Cui ZX; Yang XH; Li YP
    Sci Rep; 2015 Feb; 5():8503. PubMed ID: 25687255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip copper-dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors.
    Frey L; Masarotto L; D'Aillon PG; Pellé C; Armand M; Marty M; Jamin-Mornet C; Lhostis S; Le Briz O
    Appl Opt; 2014 Jul; 53(20):4493-502. PubMed ID: 25090070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limitations in the use of dielectric interference filters in wide angle optical receivers.
    Lerner RM
    Appl Opt; 1971 Aug; 10(8):1914-8. PubMed ID: 20111227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal/dielectric transmission interference filters with low reflectance. 1. Design.
    Dobrowolski JA; Li L; Kemp RA
    Appl Opt; 1995 Sep; 34(25):5673-83. PubMed ID: 21060397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Interference Coating Design Contest 2022: a black box coating and a filter for an outdoor 3D cinema challenge [invited].
    Kruschwitz JDT; Trubetskov M; Keck J
    Appl Opt; 2023 Mar; 62(7):B43-B54. PubMed ID: 37132885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.