These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27608141)

  • 1. Programmable Wrinkling of Self-Assembled Nanoparticle Films on Shape Memory Polymers.
    Gabardo CM; Yang J; Smith NJ; Adams-McGavin RC; Soleymani L
    ACS Nano; 2016 Sep; 10(9):8829-36. PubMed ID: 27608141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing Wrinkling Patterns Using Shape Memory Polymer Microparticles.
    Li W; Liu Y; Leng J
    ACS Appl Mater Interfaces; 2021 May; 13(19):23074-23080. PubMed ID: 33949849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable Wrinkling Patterns on Chitosan Microspheres Generated from Self-Assembling Metal Nanoparticles.
    Liang X; Gao M; Xie H; Xu Q; Wu Y; Hu J; Lu A; Zhang L
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22824-22833. PubMed ID: 31188553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable, reversible and repeatable wrinkling of shape memory polymer thin films on elastomeric substrates for smart adhesion.
    Wang Y; Xiao J
    Soft Matter; 2017 Aug; 13(31):5317-5323. PubMed ID: 28691725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of layer structures of gold nanoparticle films on surface enhanced Raman scattering.
    Oh MK; Yun S; Kim SK; Park S
    Anal Chim Acta; 2009 Sep; 649(1):111-6. PubMed ID: 19664470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.
    Jung WB; Cho KM; Lee WK; Odom TW; Jung HT
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1347-1355. PubMed ID: 29179552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Functionalization of 4D Printed Substrates Using Polymeric and Metallic Wrinkles.
    Agyapong JN; Van Durme B; Van Vlierberghe S; Henderson JH
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling.
    Gabardo CM; Adams-McGavin RC; Fung BC; Mahoney EJ; Fang Q; Soleymani L
    Sci Rep; 2017 Feb; 7():42543. PubMed ID: 28211898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Topography of Dynamic 3D Scaffolds through Functional Protein Wrinkled Coatings.
    Oguntade E; Fougnier D; Meyer S; O'Grady K; Kudlack A; Henderson JH
    Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Wrinkling of Gradient Metal Films.
    Schedl AE; Neuber C; Fery A; Schmidt HW
    Langmuir; 2018 Nov; 34(47):14249-14253. PubMed ID: 30388014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable SERS Platforms from Small Nanoparticle 3D Superlattices: A Comparison between Gold, Silver, and Copper.
    Chapus L; Aubertin P; Joiret S; Lucas IT; Maisonhaute E; Courty A
    Chemphyschem; 2017 Nov; 18(21):3066-3075. PubMed ID: 28862382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterned polymer films via reactive silane infusion-induced wrinkling.
    Li Y; Peterson JJ; Jhaveri SB; Carter KR
    Langmuir; 2013 Apr; 29(14):4632-9. PubMed ID: 23496840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable formation of ordered wrinkles in metal films with controlled thickness gradients deposited on soft elastic substrates.
    Yu S; Ni Y; He L; Ye QL
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5160-7. PubMed ID: 25706856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles.
    Jung HY; Park YK; Park S; Kim SK
    Anal Chim Acta; 2007 Oct; 602(2):236-43. PubMed ID: 17933609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the micro- and nanostructure in the performance of surface-enhanced Raman scattering substrates assembled from gold nanoparticles.
    Kuncicky DM; Christesen SD; Velev OD
    Appl Spectrosc; 2005 Apr; 59(4):401-9. PubMed ID: 15901324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ionic surfactant-mediated Langmuir-Blodgett method to construct gold nanoparticle films for surface-enhanced Raman scattering.
    Pienpinijtham P; Han XX; Ekgasit S; Ozaki Y
    Phys Chem Chem Phys; 2012 Aug; 14(29):10132-9. PubMed ID: 22735494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superhydrophobic surfaces from hierarchically structured wrinkled polymers.
    Li Y; Dai S; John J; Carter KR
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11066-73. PubMed ID: 24131534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.