These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2760828)

  • 1. Preliminary studies of the development of a direct compression cellulose excipient from bagasse.
    Padmadisastra Y; Gonda I
    J Pharm Sci; 1989 Jun; 78(6):508-14. PubMed ID: 2760828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spray-dried cellulose nanofibers as novel tablet excipient.
    Kolakovic R; Peltonen L; Laaksonen T; Putkisto K; Laukkanen A; Hirvonen J
    AAPS PharmSciTech; 2011 Dec; 12(4):1366-73. PubMed ID: 22005956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties.
    Alamdari NE; Aksoy B; Babu RJ; Jiang Z
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132298. PubMed ID: 38750863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.
    Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA
    Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression.
    Nakamura S; Tanaka C; Yuasa H; Sakamoto T
    AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization, and tabletting properties of a new cellulose-based pharmaceutical aid.
    Kumar V; de la Luz Reus-Medina M; Yang D
    Int J Pharm; 2002 Mar; 235(1-2):129-40. PubMed ID: 11879748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets.
    Suzuki T; Nakagami H
    Eur J Pharm Biopharm; 1999 May; 47(3):225-30. PubMed ID: 10382106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of several microcrystalline celluloses obtained from agricultural by-products.
    Rojas J; Lopez A; Guisao S; Ortiz C
    J Adv Pharm Technol Res; 2011 Jul; 2(3):144-50. PubMed ID: 22171310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental investigation of temperature rise during compaction of pharmaceutical powders.
    Krok A; Mirtic A; Reynolds GK; Schiano S; Roberts R; Wu CY
    Int J Pharm; 2016 Nov; 513(1-2):97-108. PubMed ID: 27601333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of carrageenan in mixture with microcrystalline cellulose and its functionality for making tablets.
    Picker KM
    Eur J Pharm Biopharm; 1999 Jul; 48(1):27-36. PubMed ID: 10477325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of near-infrared spectroscopy for nondestructive analysis of Avicel powders and tablets.
    Ebube NK; Thosar SS; Roberts RA; Kemper MS; Rubinovitz R; Martin DL; Reier GE; Wheatley TA; Shukla AJ
    Pharm Dev Technol; 1999 Jan; 4(1):19-26. PubMed ID: 10027209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique.
    Maghsoodi M; Taghizadeh O; Martin GP; Nokhodchi A
    Int J Pharm; 2008 Mar; 351(1-2):45-54. PubMed ID: 17980983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the disintegration properties of microcrystalline cellulose II and commercial disintegrants.
    Rojas J; Kumar V
    Pharmazie; 2012 Jun; 67(6):500-6. PubMed ID: 22822537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient.
    Adeleye OA; Bamiro OA; Albalawi DA; Alotaibi AS; Iqbal H; Sanyaolu S; Femi-Oyewo MN; Sodeinde KO; Yahaya ZS; Thiripuranathar G; Menaa F
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile.
    Hosseini A; Körber M; Bodmeier R
    Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of cellulose II powders as a potential multifunctional excipient in tablet formulations.
    de la Luz Reus Medina M; Kumar V
    Int J Pharm; 2006 Sep; 322(1-2):31-5. PubMed ID: 16828996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of microcrystalline cellulose crystallinity on the hydrophilic property of tablets and the hydrolysis of acetylsalicylic acid as active pharmaceutical ingredient inside tablets.
    Awa K; Shinzawa H; Ozaki Y
    AAPS PharmSciTech; 2015 Aug; 16(4):865-70. PubMed ID: 25583304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties.
    Hadzović E; Betz G; Hadzidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2010 Aug; 396(1-2):53-62. PubMed ID: 20600735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of compression on some physical properties of microcrystalline cellulose powders.
    Sixsmith D
    J Pharm Pharmacol; 1977 Jan; 29(1):33-6. PubMed ID: 13179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.