These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27608454)

  • 1. Gradient-Based Optimization for Poroelastic and Viscoelastic MR Elastography.
    Tan L; McGarry MD; Van Houten EE; Ji M; Solamen L; Weaver JB; Paulsen KD
    IEEE Trans Med Imaging; 2017 Jan; 36(1):236-250. PubMed ID: 27608454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suitability of poroelastic and viscoelastic mechanical models for high and low frequency MR elastography.
    McGarry MD; Johnson CL; Sutton BP; Georgiadis JG; Van Houten EE; Pattison AJ; Weaver JB; Paulsen KD
    Med Phys; 2015 Feb; 42(2):947-57. PubMed ID: 25652507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear Inversion MR Elastography With Low-Frequency Actuation.
    Zeng W; Gordon-Wylie SW; Tan L; Solamen L; McGarry MDJ; Weaver JB; Paulsen KD
    IEEE Trans Med Imaging; 2020 May; 39(5):1775-1784. PubMed ID: 31825863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniqueness of poroelastic and viscoelastic nonlinear inversion MR elastography at low frequencies.
    McGarry M; Van Houten E; Solamen L; Gordon-Wylie S; Weaver J; Paulsen K
    Phys Med Biol; 2019 Mar; 64(7):075006. PubMed ID: 30808018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimizing Measurement-Induced Errors in Viscoelastic MR Elastography.
    Kurtz S; Wattrisse B; Van Houten EEW
    IEEE Trans Med Imaging; 2024 Mar; 43(3):1138-1148. PubMed ID: 37910409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phantom evaluations of low frequency MR elastography.
    Solamen LM; Gordon-Wylie SW; McGarry MD; Weaver JB; Paulsen KD
    Phys Med Biol; 2019 Mar; 64(6):065010. PubMed ID: 30695755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K-space data processing for magnetic resonance elastography (MRE).
    Corbin N; Breton E; de Mathelin M; Vappou J
    MAGMA; 2017 Apr; 30(2):203-213. PubMed ID: 27822656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of soft poroelastic tissue in time-harmonic MR elastography.
    Perriñez PR; Kennedy FE; Van Houten EE; Weaver JB; Paulsen KD
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):598-608. PubMed ID: 19272864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical framework for interstitial fluid pressure imaging in poroelastic MRE.
    Tan L; McGarry MDJ; Van Houten EEW; Ji M; Solamen L; Zeng W; Weaver JB; Paulsen KD
    PLoS One; 2017; 12(6):e0178521. PubMed ID: 28586393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automatic differentiation-based gradient method for inversion of the shear wave equation in magnetic resonance elastography: specific application in fibrous soft tissues.
    Chatelin S; Charpentier I; Corbin N; Meylheuc L; Vappou J
    Phys Med Biol; 2016 Jul; 61(13):5000-19. PubMed ID: 27300107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparsity regularization in dynamic elastography.
    Honarvar M; Sahebjavaher RS; Salcudean SE; Rohling R
    Phys Med Biol; 2012 Oct; 57(19):5909-27. PubMed ID: 22955065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance elastography using 3D gradient echo measurements of steady-state motion.
    Weaver JB; Van Houten EE; Miga MI; Kennedy FE; Paulsen KD
    Med Phys; 2001 Aug; 28(8):1620-8. PubMed ID: 11548931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards clinical prostate ultrasound elastography using full inversion approach.
    Mousavi SR; Sadeghi-Naini A; Czarnota GJ; Samani A
    Med Phys; 2014 Mar; 41(3):033501. PubMed ID: 24593743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interventional MR elastography for MRI-guided percutaneous procedures.
    Corbin N; Vappou J; Breton E; Boehler Q; Barbé L; Renaud P; de Mathelin M
    Magn Reson Med; 2016 Mar; 75(3):1110-8. PubMed ID: 25846380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modality independent elastography (MIE): a new approach to elasticity imaging.
    Washington CW; Miga MI
    IEEE Trans Med Imaging; 2004 Sep; 23(9):1117-28. PubMed ID: 15377121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scattering and Diffraction of Elastodynamic Waves in a Concentric Cylindrical Phantom for MR Elastography.
    Schwartz BL; Yin Z; Yasar TK; Liu Y; Khan AA; Ye AQ; Royston TJ; Magin RL
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2308-2316. PubMed ID: 26886963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifrequency inversion in magnetic resonance elastography.
    Papazoglou S; Hirsch S; Braun J; Sack I
    Phys Med Biol; 2012 Apr; 57(8):2329-46. PubMed ID: 22460134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General guidelines for the performance of viscoelastic property identification in elastography: A Monte-Carlo analysis from a closed-form solution.
    Van Houten E; Geymonat G; Krasucki F; Wattrisse B
    Int J Numer Method Biomed Eng; 2023 Aug; 39(8):e3741. PubMed ID: 37313593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo brain viscoelastic properties measured by magnetic resonance elastography.
    Green MA; Bilston LE; Sinkus R
    NMR Biomed; 2008 Aug; 21(7):755-64. PubMed ID: 18457350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the adjoint equation based algorithm for elasticity imaging.
    Oberai AA; Gokhale NH; Doyley MM; Bamber JC
    Phys Med Biol; 2004 Jul; 49(13):2955-74. PubMed ID: 15285258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.