These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 27608603)
1. Intracortical depth analyses of frequency-sensitive regions of human auditory cortex using 7TfMRI. Ahveninen J; Chang WT; Huang S; Keil B; Kopco N; Rossi S; Bonmassar G; Witzel T; Polimeni JR Neuroimage; 2016 Dec; 143():116-127. PubMed ID: 27608603 [TBL] [Abstract][Full Text] [Related]
2. Dependence of resting-state fMRI fluctuation amplitudes on cerebral cortical orientation relative to the direction of B0 and anatomical axes. Viessmann O; Scheffler K; Bianciardi M; Wald LL; Polimeni JR Neuroimage; 2019 Aug; 196():337-350. PubMed ID: 31002965 [TBL] [Abstract][Full Text] [Related]
3. Tonotopic maps in human auditory cortex using arterial spin labeling. Gardumi A; Ivanov D; Havlicek M; Formisano E; Uludağ K Hum Brain Mapp; 2017 Mar; 38(3):1140-1154. PubMed ID: 27790786 [TBL] [Abstract][Full Text] [Related]
4. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field. Moerel M; De Martino F; Kemper VG; Schmitter S; Vu AT; Uğurbil K; Formisano E; Yacoub E Neuroimage; 2018 Jan; 164():18-31. PubMed ID: 28373123 [TBL] [Abstract][Full Text] [Related]
5. Representations of the temporal envelope of sounds in human auditory cortex: can the results from invasive intracortical "depth" electrode recordings be replicated using non-invasive MEG "virtual electrodes"? Millman RE; Prendergast G; Hymers M; Green GG Neuroimage; 2013 Jan; 64():185-96. PubMed ID: 22989625 [TBL] [Abstract][Full Text] [Related]
6. Reliability of the depth-dependent high-resolution BOLD hemodynamic response in human visual cortex and vicinity. Kim JH; Ress D Magn Reson Imaging; 2017 Jun; 39():53-63. PubMed ID: 28137626 [TBL] [Abstract][Full Text] [Related]
7. Impact of acquisition and analysis strategies on cortical depth-dependent fMRI. Kashyap S; Ivanov D; Havlicek M; Poser BA; Uludağ K Neuroimage; 2018 Mar; 168():332-344. PubMed ID: 28506874 [TBL] [Abstract][Full Text] [Related]
8. Population receptive field estimates of human auditory cortex. Thomas JM; Huber E; Stecker GC; Boynton GM; Saenz M; Fine I Neuroimage; 2015 Jan; 105():428-39. PubMed ID: 25449742 [TBL] [Abstract][Full Text] [Related]
10. Frequency preference and attention effects across cortical depths in the human primary auditory cortex. De Martino F; Moerel M; Ugurbil K; Goebel R; Yacoub E; Formisano E Proc Natl Acad Sci U S A; 2015 Dec; 112(52):16036-41. PubMed ID: 26668397 [TBL] [Abstract][Full Text] [Related]
11. Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data. Blazejewska AI; Fischl B; Wald LL; Polimeni JR Neuroimage; 2019 Apr; 189():601-614. PubMed ID: 30690157 [TBL] [Abstract][Full Text] [Related]
12. Representation of sound categories in auditory cortical maps. Guenther FH; Nieto-Castanon A; Ghosh SS; Tourville JA J Speech Lang Hear Res; 2004 Feb; 47(1):46-57. PubMed ID: 15072527 [TBL] [Abstract][Full Text] [Related]
13. Cortical depth profiles of auditory and visual 7 T functional MRI responses in human superior temporal areas. Lankinen K; Ahlfors SP; Mamashli F; Blazejewska AI; Raij T; Turpin T; Polimeni JR; Ahveninen J Hum Brain Mapp; 2023 Feb; 44(2):362-372. PubMed ID: 35980015 [TBL] [Abstract][Full Text] [Related]
14. Cerebral blood volume sensitive layer-fMRI in the human auditory cortex at 7T: Challenges and capabilities. Faes LK; De Martino F; Huber LR PLoS One; 2023; 18(2):e0280855. PubMed ID: 36758009 [TBL] [Abstract][Full Text] [Related]
15. Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses. Esposito F; Singer N; Podlipsky I; Fried I; Hendler T; Goebel R Neuroimage; 2013 Feb; 66():457-68. PubMed ID: 23138047 [TBL] [Abstract][Full Text] [Related]
16. Representation of the temporal envelope of sounds in the human brain. Giraud AL; Lorenzi C; Ashburner J; Wable J; Johnsrude I; Frackowiak R; Kleinschmidt A J Neurophysiol; 2000 Sep; 84(3):1588-98. PubMed ID: 10980029 [TBL] [Abstract][Full Text] [Related]
17. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. Talavage TM; Sereno MI; Melcher JR; Ledden PJ; Rosen BR; Dale AM J Neurophysiol; 2004 Mar; 91(3):1282-96. PubMed ID: 14614108 [TBL] [Abstract][Full Text] [Related]
18. Tonotopic mapping of human auditory cortex. Saenz M; Langers DR Hear Res; 2014 Jan; 307():42-52. PubMed ID: 23916753 [TBL] [Abstract][Full Text] [Related]
19. Tonotopic gradients in human primary auditory cortex: concurring evidence from high-resolution 7 T and 3 T fMRI. Da Costa S; Saenz M; Clarke S; van der Zwaag W Brain Topogr; 2015 Jan; 28(1):66-9. PubMed ID: 25098273 [TBL] [Abstract][Full Text] [Related]
20. A dynamical model of the laminar BOLD response. Havlicek M; Uludağ K Neuroimage; 2020 Jan; 204():116209. PubMed ID: 31546051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]