These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. Grover CN; Cameron RE; Best SM J Mech Behav Biomed Mater; 2012 Jun; 10():62-74. PubMed ID: 22520419 [TBL] [Abstract][Full Text] [Related]
9. Heart valve tissue-derived hydrogels: Preparation and characterization of mitral valve chordae, aortic valve, and mitral valve gels. Wu J; Brazile B; McMahan SR; Liao J; Hong Y J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1732-1740. PubMed ID: 30419146 [TBL] [Abstract][Full Text] [Related]
11. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Syedain Z; Reimer J; Schmidt J; Lahti M; Berry J; Bianco R; Tranquillo RT Biomaterials; 2015 Dec; 73():175-84. PubMed ID: 26409002 [TBL] [Abstract][Full Text] [Related]
12. Comparative study of the Triton X-100-sodium deoxycholate method and detergent-enzymatic digestion method for decellularization of porcine aortic valves. Yu BT; Li WT; Song BQ; Wu YL Eur Rev Med Pharmacol Sci; 2013 Aug; 17(16):2179-84. PubMed ID: 23893184 [TBL] [Abstract][Full Text] [Related]
13. Design and Testing of a Pulsatile Conditioning System for Dynamic Endothelialization of Polyphenol-Stabilized Tissue Engineered Heart Valves. Sierad LN; Simionescu A; Albers C; Chen J; Maivelett J; Tedder ME; Liao J; Simionescu DT Cardiovasc Eng Technol; 2010 Jun; 1(2):138-153. PubMed ID: 21340043 [TBL] [Abstract][Full Text] [Related]
14. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering. Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917 [TBL] [Abstract][Full Text] [Related]
15. Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds. Sant S; Iyer D; Gaharwar AK; Patel A; Khademhosseini A Acta Biomater; 2013 Apr; 9(4):5963-73. PubMed ID: 23168222 [TBL] [Abstract][Full Text] [Related]
16. Umbilical cord as human cell source for mitral valve tissue engineering - venous vs. arterial cells. Malischewski A; Moreira R; Hurtado L; Gesché V; Schmitz-Rode T; Jockenhoevel S; Mela P Biomed Tech (Berl); 2017 Oct; 62(5):457-466. PubMed ID: 28453437 [TBL] [Abstract][Full Text] [Related]
17. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Jana S; Bhagia A; Lerman A Biomed Mater; 2019 Oct; 14(6):065014. PubMed ID: 31593551 [TBL] [Abstract][Full Text] [Related]
18. Reference models for mitral valve tissue engineering based on valve cell phenotype and extracellular matrix analysis. Flanagan TC; Black A; O'Brien M; Smith TJ; Pandit AS Cells Tissues Organs; 2006; 183(1):12-23. PubMed ID: 16974091 [TBL] [Abstract][Full Text] [Related]
19. Trilayer scaffold with cardiosphere-derived cells for heart valve tissue engineering. Chen Q; Bruyneel A; Carr C; Czernuszka J J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):729-737. PubMed ID: 31184806 [TBL] [Abstract][Full Text] [Related]
20. Assessment of Parylene C Thin Films for Heart Valve Tissue Engineering. Marei I; Chester A; Carubelli I; Prodromakis T; Trantidou T; Yacoub MH Tissue Eng Part A; 2015 Oct; 21(19-20):2504-14. PubMed ID: 26101808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]