These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27608990)

  • 1. Wave propagation in spatially modulated tubes.
    Ziepke A; Martens S; Engel H
    J Chem Phys; 2016 Sep; 145(9):094108. PubMed ID: 27608990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Front propagation in channels with spatially modulated cross section.
    Martens S; Löber J; Engel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022902. PubMed ID: 25768565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Front propagation in one-dimensional spatially periodic bistable media.
    Löber J; Bär M; Engel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066210. PubMed ID: 23368027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropic particle transport: higher-order corrections to the Fick-Jacobs diffusion equation.
    Martens S; Schmid G; Schimansky-Geier L; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051135. PubMed ID: 21728518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solitary pulses and periodic wave trains in a bistable FitzHugh-Nagumo model with cross diffusion and cross advection.
    Zemskov EP; Tsyganov MA; Ivanitsky GR; Horsthemke W
    Phys Rev E; 2022 Jan; 105(1-1):014207. PubMed ID: 35193304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biased Brownian motion in extremely corrugated tubes.
    Martens S; Schmid G; Schimansky-Geier L; Hänggi P
    Chaos; 2011 Dec; 21(4):047518. PubMed ID: 22225392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line.
    Kengne E; Lakhssassi A; Liu WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062915. PubMed ID: 26172780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The geometry and motion of reaction-diffusion waves on closed two-dimensional manifolds.
    Grindrod P; Gomatam J
    J Math Biol; 1987; 25(6):597-610. PubMed ID: 3437227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion in a two-dimensional channel with curved midline and varying width: reduction to an effective one-dimensional description.
    Bradley RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061142. PubMed ID: 20365153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of one- and two-dimensional kinks in bistable reaction-diffusion equations with quasidiscrete sources of reaction.
    Rotstein HG; Zhabotinsky AM; Epstein IR
    Chaos; 2001 Dec; 11(4):833-842. PubMed ID: 12779522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of curved midline and varying width on the description of the effective diffusivity of Brownian particles.
    Chávez Y; Chacón-Acosta G; Dagdug L
    J Phys Condens Matter; 2018 May; 30(19):194001. PubMed ID: 29583127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory pulse-front waves in a reaction-diffusion system with cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2018 Jun; 97(6-1):062206. PubMed ID: 30011462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion in the presence of cylindrical obstacles arranged in a square lattice analyzed with generalized Fick-Jacobs equation.
    Dagdug L; Vazquez MV; Berezhkovskii AM; Zitserman VY; Bezrukov SM
    J Chem Phys; 2012 May; 136(20):204106. PubMed ID: 22667539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly nonlinear solitary waves in chains of ellipsoidal particles.
    Ngo D; Khatri D; Daraio C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026610. PubMed ID: 21929131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical and numerical study of travelling waves using the Maxwell-Cattaneo relaxation model extended to reaction-advection-diffusion systems.
    Sabelnikov VA; Petrova NN; Lipatnikov AN
    Phys Rev E; 2016 Oct; 94(4-1):042218. PubMed ID: 27841507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillatory multipulsons: Dissipative soliton trains in bistable reaction-diffusion systems with cross diffusion of attractive-repulsive type.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2020 Mar; 101(3-1):032208. PubMed ID: 32289978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaping wave patterns in reaction-diffusion systems.
    Löber J; Martens S; Engel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062911. PubMed ID: 25615168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing critical propagation in a reaction-diffusion-advection model using unstable slow waves.
    Kneer F; Obermayer K; Dahlem MA
    Eur Phys J E Soft Matter; 2015 Feb; 38(2):95. PubMed ID: 25704900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the position of traveling waves in reaction-diffusion systems.
    Löber J; Engel H
    Phys Rev Lett; 2014 Apr; 112(14):148305. PubMed ID: 24766027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.