These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 27609037)

  • 61. Mechanotransduction: Relevance to Physical Therapist Practice-Understanding Our Ability to Affect Genetic Expression Through Mechanical Forces.
    Dunn SL; Olmedo ML
    Phys Ther; 2016 May; 96(5):712-21. PubMed ID: 26700270
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer.
    Peng AW; Gnanasambandam R; Sachs F; Ricci AJ
    J Neurosci; 2016 Mar; 36(10):2945-56. PubMed ID: 26961949
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mechanical signals, IGF-I gene splicing, and muscle adaptation.
    Goldspink G
    Physiology (Bethesda); 2005 Aug; 20():232-8. PubMed ID: 16024511
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Mechanotransduction Signaling Pathways in the Regulation of Osteogenesis.
    Liu Z; Wang Q; Zhang J; Qi S; Duan Y; Li C
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762629
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanosignaling in bone health, trauma and inflammation.
    Knapik DM; Perera P; Nam J; Blazek AD; Rath B; Leblebicioglu B; Das H; Wu LC; Hewett TE; Agarwal SK; Robling AG; Flanigan DC; Lee BS; Agarwal S
    Antioxid Redox Signal; 2014 Feb; 20(6):970-85. PubMed ID: 23815527
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Low-magnitude mechanical signals and the spine: A review of current and future applications.
    Pham MH; Buser Z; Wang JC; Acosta FL
    J Clin Neurosci; 2017 Jun; 40():18-23. PubMed ID: 28089422
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Skeletal cell stresses and bone adaptation.
    McLeod KJ; Rubin CT; Otter MW; Qin YX
    Am J Med Sci; 1998 Sep; 316(3):176-83. PubMed ID: 9749559
    [TBL] [Abstract][Full Text] [Related]  

  • 68. "Culture shock" from the bone cell's perspective: emulating physiological conditions for mechanobiological investigations.
    Sorkin AM; Dee KC; Knothe Tate ML
    Am J Physiol Cell Physiol; 2004 Dec; 287(6):C1527-36. PubMed ID: 15317661
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Role of Nerves in Skeletal Development, Adaptation, and Aging.
    Tomlinson RE; Christiansen BA; Giannone AA; Genetos DC
    Front Endocrinol (Lausanne); 2020; 11():646. PubMed ID: 33071963
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Frequency specific modulation of bone adaptation by induced electric fields.
    McLeod KJ; Rubin CT
    J Theor Biol; 1990 Aug; 145(3):385-96. PubMed ID: 2232823
    [TBL] [Abstract][Full Text] [Related]  

  • 71. From cellular mechanotransduction to biologically inspired engineering: 2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009.
    Ingber DE
    Ann Biomed Eng; 2010 Mar; 38(3):1148-61. PubMed ID: 20140519
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Perception and response of skeleton to mechanical stress.
    Ding S; Chen Y; Huang C; Song L; Liang Z; Wei B
    Phys Life Rev; 2024 Jul; 49():77-94. PubMed ID: 38564907
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Metabo-reciprocity in cell mechanics: feeling the demands/feeding the demand.
    Torrino S; Bertero T
    Trends Cell Biol; 2022 Jul; 32(7):624-636. PubMed ID: 35177291
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Remarks on the technical note entitled 'Temporal stability of node-based internal bone adaptation simulations'.
    Cowin SC; Arramon YP; Luo GM; Sadegh AM
    J Biomech; 1998 Jan; 31(1):103-6. PubMed ID: 9596546
    [No Abstract]   [Full Text] [Related]  

  • 75. The Kroc Foundation Conference on Functional Adaptation in Bone Tissue.
    Calcif Tissue Int; 1984; 36 Suppl 1():S1-161. PubMed ID: 6430507
    [No Abstract]   [Full Text] [Related]  

  • 76. Androgens have antiresorptive effects on trabecular disuse osteopenia independent from muscle atrophy.
    Laurent MR; Jardí F; Dubois V; Schollaert D; Khalil R; Gielen E; Carmeliet G; Claessens F; Vanderschueren D
    Bone; 2016 Dec; 93():33-42. PubMed ID: 27622887
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Control of Bone Anabolism in Response to Mechanical Loading and PTH by Distinct Mechanisms Downstream of the PTH Receptor.
    Delgado-Calle J; Tu X; Pacheco-Costa R; McAndrews K; Edwards R; Pellegrini GG; Kuhlenschmidt K; Olivos N; Robling A; Peacock M; Plotkin LI; Bellido T
    J Bone Miner Res; 2017 Mar; 32(3):522-535. PubMed ID: 27704638
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Elucidating the "Gravome": Quantitative Proteomic Profiling of the Response to Chronic Hypergravity in Drosophila.
    Hosamani R; Leib R; Bhardwaj SR; Adams CM; Bhattacharya S
    J Proteome Res; 2016 Dec; 15(12):4165-4175. PubMed ID: 27648494
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sleep on manned space flights: Zero gravity reduces sleep duration.
    Gonfalone A
    Pathophysiology; 2016 Dec; 23(4):259-263. PubMed ID: 27645475
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.