These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 27610129)
1. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242). Almusawi AR; Dülger LC; Kapucu S Comput Intell Neurosci; 2016; 2016():5720163. PubMed ID: 27610129 [TBL] [Abstract][Full Text] [Related]
2. A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm. Zhao G; Jiang D; Liu X; Tong X; Sun Y; Tao B; Kong J; Yun J; Liu Y; Fang Z Front Bioeng Biotechnol; 2022; 10():832829. PubMed ID: 35662837 [TBL] [Abstract][Full Text] [Related]
3. A limit-cycle self-organizing map architecture for stable arm control. Huang DW; Gentili RJ; Katz GE; Reggia JA Neural Netw; 2017 Jan; 85():165-181. PubMed ID: 27855307 [TBL] [Abstract][Full Text] [Related]
4. Closed-form inverse kinematics for interventional C-arm X-ray imaging with six degrees of freedom: modeling and application. Wang L; Fallavollita P; Zou R; Chen X; Weidert S; Navab N IEEE Trans Med Imaging; 2012 May; 31(5):1086-99. PubMed ID: 22293978 [TBL] [Abstract][Full Text] [Related]
5. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot. Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713 [TBL] [Abstract][Full Text] [Related]
6. A behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation. Wang X J Biomech; 1999 May; 32(5):453-60. PubMed ID: 10326998 [TBL] [Abstract][Full Text] [Related]
7. Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems. Aftab MS; Shafiq M ISA Trans; 2015 Nov; 59():363-74. PubMed ID: 26456201 [TBL] [Abstract][Full Text] [Related]
8. Artificial Neural Network to Detect Human Hand Gestures for a Robotic Arm Control. Schabron B; Alashqar Z; Fuhrman N; Jibbe K; Desai J Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1662-1665. PubMed ID: 31946215 [TBL] [Abstract][Full Text] [Related]
9. Kinematics and Singularity Analysis of a 7-DOF Redundant Manipulator. Shi X; Guo Y; Chen X; Chen Z; Yang Z Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770562 [TBL] [Abstract][Full Text] [Related]
10. Passive magnetic-based localization for precise untethered medical instrument tracking. Sun Z; Maréchal L; Foong S Comput Methods Programs Biomed; 2018 Mar; 156():151-161. PubMed ID: 29428067 [TBL] [Abstract][Full Text] [Related]
11. Cerebellum-inspired neural network solution of the inverse kinematics problem. Asadi-Eydivand M; Ebadzadeh MM; Solati-Hashjin M; Darlot C; Abu Osman NA Biol Cybern; 2015 Dec; 109(6):561-74. PubMed ID: 26438095 [TBL] [Abstract][Full Text] [Related]
12. Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation. Mick S; Badets A; Oudeyer PY; Cattaert D; De Rugy A Hum Factors; 2022 Mar; 64(2):372-384. PubMed ID: 32809867 [TBL] [Abstract][Full Text] [Related]
13. An Uncontrolled Manifold Analysis of Arm Joint Variability in Virtual Planar Position and Orientation Telemanipulation. Buzzi J; De Momi E; Nisky I IEEE Trans Biomed Eng; 2019 Feb; 66(2):391-402. PubMed ID: 29993394 [TBL] [Abstract][Full Text] [Related]
14. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing. Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819 [TBL] [Abstract][Full Text] [Related]
15. Simulation of the primate motor cortex and free arm movements in three-dimensional space: a robot arm system controlled by an artificial neural network. Dauffenbach LM Biomed Sci Instrum; 1999; 35():360-5. PubMed ID: 11143378 [TBL] [Abstract][Full Text] [Related]
16. Neural network control of multifingered robot hands using visual feedback. Zhao Y; Cheah CC IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155 [TBL] [Abstract][Full Text] [Related]
17. Whole arm manipulation planning based on feedback velocity fields and sampling-based techniques. Talaei B; Abdollahi F; Talebi HA; Omidi Karkani E ISA Trans; 2013 Sep; 52(5):684-91. PubMed ID: 23701897 [TBL] [Abstract][Full Text] [Related]
18. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots. Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968 [TBL] [Abstract][Full Text] [Related]
19. A novel methodology to reproduce previously recorded six-degree of freedom kinematics on the same diarthrodial joint. Moore SM; Thomas M; Woo SL; Gabriel MT; Kilger R; Debski RE J Biomech; 2006; 39(10):1914-23. PubMed ID: 16005464 [TBL] [Abstract][Full Text] [Related]
20. Redundancy resolution of the human arm and an upper limb exoskeleton. Kim H; Miller LM; Byl N; Abrams GM; Rosen J IEEE Trans Biomed Eng; 2012 Jun; 59(6):1770-9. PubMed ID: 22510944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]