These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 27610294)

  • 1. Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method.
    Bahşı AK; Yalçınbaş S
    Springerplus; 2016; 5(1):1375. PubMed ID: 27610294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A space-time spectral collocation algorithm for the variable order fractional wave equation.
    Bhrawy AH; Doha EH; Alzaidy JF; Abdelkawy MA
    Springerplus; 2016; 5(1):1220. PubMed ID: 27536504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations.
    Khader MM
    J Comput Nonlinear Dyn; 2013 Oct; 8(4):41018-NaN. PubMed ID: 24891846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sinc-Chebyshev collocation method for a class of fractional diffusion-wave equations.
    Mao Z; Xiao A; Yu Z; Shi L
    ScientificWorldJournal; 2014; 2014():143983. PubMed ID: 24977177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods.
    Saad KM; Khader MM; Gómez-Aguilar JF; Baleanu D
    Chaos; 2019 Feb; 29(2):023116. PubMed ID: 30823705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix.
    Xie J; Huang Q; Yang X
    Springerplus; 2016; 5(1):1149. PubMed ID: 27504247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus.
    Srivastava HM; Saad KM; Khader MM
    Chaos Solitons Fractals; 2020 Nov; 140():110174. PubMed ID: 32834654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bernstein collocation method for neutral type functional differential equation.
    Ali I
    Math Biosci Eng; 2021 Mar; 18(3):2764-2774. PubMed ID: 33892570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable numerical results to a class of time-space fractional partial differential equations via spectral method.
    Shah K; Jarad F; Abdeljawad T
    J Adv Res; 2020 Sep; 25():39-48. PubMed ID: 32922972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new spline technique for the time fractional diffusion-wave equation.
    Singh S; Singh S; Aggarwal A
    MethodsX; 2023; 10():102007. PubMed ID: 36660341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthonormal piecewise Vieta-Lucas functions for the numerical solution of the one- and two-dimensional piecewise fractional Galilei invariant advection-diffusion equations.
    Heydari MH; Razzaghi M; Baleanu D
    J Adv Res; 2023 Jul; 49():175-190. PubMed ID: 36220592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral shifted Chebyshev collocation technique with residual power series algorithm for time fractional problems.
    Rida SZ; Arafa AAM; Hussein HS; Ameen IG; Mostafa MMM
    Sci Rep; 2024 Apr; 14(1):8683. PubMed ID: 38622192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Legendre spectral-collocation method for solving some types of fractional optimal control problems.
    Sweilam NH; Al-Ajami TM
    J Adv Res; 2015 May; 6(3):393-403. PubMed ID: 26257937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of nonlinear Burgers equation with time fractional Atangana-Baleanu-Caputo derivative.
    Ghafoor A; Fiaz M; Shah K; Abdeljawad T
    Heliyon; 2024 Jul; 10(13):e33842. PubMed ID: 39055819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical study of fractional rheological models and fractional Newell-Whitehead-Segel equation with non-local and non-singular kernel.
    Tuan NH; Ganji RM; Jafari H
    Chin J Phys; 2020 Dec; 68():308-320. PubMed ID: 38620336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a time-fractal fractional derivative with a power-law kernel to the Burke-Shaw system based on Newton's interpolation polynomials.
    Almutairi N; Saber S
    MethodsX; 2024 Jun; 12():102510. PubMed ID: 38223217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast Fibonacci wavelet-based numerical algorithm for the solution of HIV-infected
    Vivek ; Kumar M; Mishra SN
    Eur Phys J Plus; 2023; 138(5):458. PubMed ID: 37252377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head.
    Izadi M; Atangana A
    Sci Rep; 2024 Feb; 14(1):3466. PubMed ID: 38342935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Discretization Approach for the Nonlinear Fractional Logistic Equation.
    Izadi M; Srivastava HM
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations.
    Jafari H; Nemati S; Ganji RM
    Adv Differ Equ; 2021; 2021(1):435. PubMed ID: 34630543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.