These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 27610380)
1. Microtubule Polymerization Functions in Hypersensitive Response and Accumulation of H2O2 in Wheat Induced by the Stripe Rust. Wang J; Wang Y; Liu X; Xu Y; Ma Q Biomed Res Int; 2016; 2016():7830768. PubMed ID: 27610380 [TBL] [Abstract][Full Text] [Related]
2. Comparison of cell death and accumulation of reactive oxygen species in wheat lines with or without Yr36 responding to Puccinia striiformis f. sp. tritici under low and high temperatures at seedling and adult-plant stages. Li H; Ren B; Kang Z; Huang L Protoplasma; 2016 May; 253(3):787-802. PubMed ID: 26070270 [TBL] [Abstract][Full Text] [Related]
3. [The generation of H2O2 in wheat hypersensitive reaction induced by leaf rust fungus]. Qi Y; Liu G; Hou CY; Wang DM Fen Zi Xi Bao Sheng Wu Xue Bao; 2008 Aug; 41(4):245-54. PubMed ID: 18958998 [TBL] [Abstract][Full Text] [Related]
4. Roles of the actin cytoskeleton and an actin-binding protein in wheat resistance against Puccinia striiformis f. sp. tritici. Song X; Ma Q; Hao X; Li H Protoplasma; 2012 Jan; 249(1):99-106. PubMed ID: 21298301 [TBL] [Abstract][Full Text] [Related]
5. TaADF4, an actin-depolymerizing factor from wheat, is required for resistance to the stripe rust pathogen Puccinia striiformis f. sp. tritici. Zhang B; Hua Y; Wang J; Huo Y; Shimono M; Day B; Ma Q Plant J; 2017 Mar; 89(6):1210-1224. PubMed ID: 27995685 [TBL] [Abstract][Full Text] [Related]
6. Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Feng H; Wang X; Zhang Q; Fu Y; Feng C; Wang B; Huang L; Kang Z Biochim Biophys Acta; 2014 Jan; 1839(1):1-12. PubMed ID: 24269602 [TBL] [Abstract][Full Text] [Related]
7. Histological and cytological characterization of adult plant resistance to wheat stripe rust. Zhang H; Wang C; Cheng Y; Chen X; Han Q; Huang L; Wei G; Kang Z Plant Cell Rep; 2012 Dec; 31(12):2121-37. PubMed ID: 22833277 [TBL] [Abstract][Full Text] [Related]
8. Wheat Gene Mamun MA; Tang C; Sun Y; Islam MN; Liu P; Wang X; Kang Z Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29874811 [TBL] [Abstract][Full Text] [Related]
9. A R2R3 MYB Transcription Factor, Hawku MD; He F; Bai X; Islam MA; Huang X; Kang Z; Guo J Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430549 [TBL] [Abstract][Full Text] [Related]
10. Down-regulation of a wheat alkaline/neutral invertase correlates with reduced host susceptibility to wheat stripe rust caused by Puccinia striiformis. Liu J; Han L; Huai B; Zheng P; Chang Q; Guan T; Li D; Huang L; Kang Z J Exp Bot; 2015 Dec; 66(22):7325-38. PubMed ID: 26386259 [TBL] [Abstract][Full Text] [Related]
11. Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses. Duan Y; Guo J; Shi X; Guan X; Liu F; Bai P; Huang L; Kang Z Plant Cell Rep; 2013 Feb; 32(2):273-83. PubMed ID: 23111787 [TBL] [Abstract][Full Text] [Related]
12. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Zhao J; Wang L; Wang Z; Chen X; Zhang H; Yao J; Zhan G; Chen W; Huang L; Kang Z Phytopathology; 2013 Sep; 103(9):927-34. PubMed ID: 23514262 [TBL] [Abstract][Full Text] [Related]
13. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease. Yang Q; Huai B; Lu Y; Cai K; Guo J; Zhu X; Kang Z; Guo J New Phytol; 2020 Jan; 225(2):880-895. PubMed ID: 31529497 [TBL] [Abstract][Full Text] [Related]
14. Race-Specific Adult-Plant Resistance in Winter Wheat to Stripe Rust and Characterization of Pathogen Virulence Patterns. Milus EA; Moon DE; Lee KD; Mason RE Phytopathology; 2015 Aug; 105(8):1114-22. PubMed ID: 25775226 [TBL] [Abstract][Full Text] [Related]
15. TaDAD2, a negative regulator of programmed cell death, is important for the interaction between wheat and the stripe rust fungus. Wang X; Tang C; Zhang H; Xu JR; Liu B; Lv J; Han D; Huang L; Kang Z Mol Plant Microbe Interact; 2011 Jan; 24(1):79-90. PubMed ID: 20795855 [TBL] [Abstract][Full Text] [Related]
16. TaMDAR6 acts as a negative regulator of plant cell death and participates indirectly in stomatal regulation during the wheat stripe rust-fungus interaction. Abou-Attia MA; Wang X; Nashaat Al-Attala M; Xu Q; Zhan G; Kang Z Physiol Plant; 2016 Mar; 156(3):262-77. PubMed ID: 26074061 [TBL] [Abstract][Full Text] [Related]
17. Wheat zinc finger protein TaLSD1, a negative regulator of programmed cell death, is involved in wheat resistance against stripe rust fungus. Guo J; Bai P; Yang Q; Liu F; Wang X; Huang L; Kang Z Plant Physiol Biochem; 2013 Oct; 71():164-72. PubMed ID: 23933226 [TBL] [Abstract][Full Text] [Related]
18. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen. Cheng Y; Zhang H; Yao J; Wang X; Xu J; Han Q; Wei G; Huang L; Kang Z BMC Plant Biol; 2012 Jun; 12():96. PubMed ID: 22716957 [TBL] [Abstract][Full Text] [Related]
19. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. Wang X; Liu W; Chen X; Tang C; Dong Y; Ma J; Huang X; Wei G; Han Q; Huang L; Kang Z BMC Plant Biol; 2010 Jan; 10():9. PubMed ID: 20067621 [TBL] [Abstract][Full Text] [Related]
20. A novel wheat NAC transcription factor, TaNAC30, negatively regulates resistance of wheat to stripe rust. Wang B; Wei J; Song N; Wang N; Zhao J; Kang Z J Integr Plant Biol; 2018 May; 60(5):432-443. PubMed ID: 29251427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]