These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27610470)
1. High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors electrodes by Al doping. Zheng X; Sun Y; Yan X; Sun X; Zhang G; Zhang Q; Jiang Y; Gao W; Zhang Y J Colloid Interface Sci; 2016 Dec; 484():155-161. PubMed ID: 27610470 [TBL] [Abstract][Full Text] [Related]
2. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes. Wang F; Seo JH; Li Z; Kvit AV; Ma Z; Wang X ACS Appl Mater Interfaces; 2014 Jan; 6(2):1288-93. PubMed ID: 24383705 [TBL] [Abstract][Full Text] [Related]
3. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires. Wang F; Seo JH; Bayerl D; Shi J; Mi H; Ma Z; Zhao D; Shuai Y; Zhou W; Wang X Nanotechnology; 2011 Jun; 22(22):225602. PubMed ID: 21454935 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Yang X; Wolcott A; Wang G; Sobo A; Fitzmorris RC; Qian F; Zhang JZ; Li Y Nano Lett; 2009 Jun; 9(6):2331-6. PubMed ID: 19449878 [TBL] [Abstract][Full Text] [Related]
5. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. He JH; Lao CS; Chen LJ; Davidovic D; Wang ZL J Am Chem Soc; 2005 Nov; 127(47):16376-7. PubMed ID: 16305207 [TBL] [Abstract][Full Text] [Related]
6. A unique core-shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach. Chebrolu VT; Balakrishnan B; Cho I; Bak JS; Kim HJ Dalton Trans; 2020 Oct; 49(41):14432-14444. PubMed ID: 33044469 [TBL] [Abstract][Full Text] [Related]
7. Low-Temperature Preparation of Ag-Doped ZnO Nanowire Arrays, DFT Study, and Application to Light-Emitting Diode. Pauporté T; Lupan O; Zhang J; Tugsuz T; Ciofini I; Labat F; Viana B ACS Appl Mater Interfaces; 2015 Jun; 7(22):11871-80. PubMed ID: 25990263 [TBL] [Abstract][Full Text] [Related]
8. Ge-doped ZnO nanowire arrays as cold field emitters with excellent performance. Liang Y Nanotechnology; 2019 Sep; 30(37):375603. PubMed ID: 31185459 [TBL] [Abstract][Full Text] [Related]
9. Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires. Wang C; Wang Y; Zhang G; Peng C; Yang G Phys Chem Chem Phys; 2014 Feb; 16(8):3771-6. PubMed ID: 24430004 [TBL] [Abstract][Full Text] [Related]
10. Diffusion-Driven Al-Doping of ZnO Nanorods and Stretchable Gas Sensors Made of Doped ZnO Nanorods/Ag Nanowires Bilayers. Namgung G; Ta QTH; Yang W; Noh JS ACS Appl Mater Interfaces; 2019 Jan; 11(1):1411-1419. PubMed ID: 30525384 [TBL] [Abstract][Full Text] [Related]
11. Arrays of ZnO/AZO (Al-doped ZnO) nanocables: a higher open circuit voltage and remarkable improvement of efficiency for CdS-sensitized solar cells. Deng J; Wang M; Liu J; Song X; Yang Z J Colloid Interface Sci; 2014 Mar; 418():277-82. PubMed ID: 24461846 [TBL] [Abstract][Full Text] [Related]
12. Large-scale solution-phase growth of Cu-doped ZnO nanowire networks. Xu C; Koo TW; Kim BS; Lee JH; Hwang SW; Whang D J Nanosci Nanotechnol; 2011 Jul; 11(7):6062-6. PubMed ID: 22121658 [TBL] [Abstract][Full Text] [Related]
13. Effects of Sn doping on the growth morphology and electrical properties of ZnO nanowires. Kim S; Na S; Jeon H; Kim S; Lee B; Yang J; Kim H; Lee HJ Nanotechnology; 2013 Feb; 24(6):065703. PubMed ID: 23340217 [TBL] [Abstract][Full Text] [Related]
14. P-type nitrogen-doped ZnO nanostructures with controlled shape and doping level by facile microwave synthesis. Herring NP; Panchakarla LS; El-Shall MS Langmuir; 2014 Mar; 30(8):2230-40. PubMed ID: 24555702 [TBL] [Abstract][Full Text] [Related]
15. The synthesis and electrical characterization of Cu2O/Al:ZnO radial p-n junction nanowire arrays. Kuo CL; Wang RC; Huang JL; Liu CP; Wang CK; Chang SP; Chu WH; Wang CH; Tu CH Nanotechnology; 2009 Sep; 20(36):365603. PubMed ID: 19687549 [TBL] [Abstract][Full Text] [Related]
16. In situ doping of ZnO nanowires using aerosol-assisted chemical vapour deposition. Pung SY; Choy KL; Hou X; Dinsdale K Nanotechnology; 2010 Aug; 21(34):345602. PubMed ID: 20671359 [TBL] [Abstract][Full Text] [Related]
17. Facile synthesis of highly uniform Mn/Co-codoped ZnO nanowires: optical, electrical, and magnetic properties. Li H; Huang Y; Zhang Q; Qiao Y; Gu Y; Liu J; Zhang Y Nanoscale; 2011 Feb; 3(2):654-60. PubMed ID: 21113544 [TBL] [Abstract][Full Text] [Related]
18. Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors. Chen Y; Liu B; Liu Q; Wang J; Li Z; Jing X; Liu L Nanoscale; 2015 Oct; 7(37):15159-67. PubMed ID: 26257017 [TBL] [Abstract][Full Text] [Related]
19. The effect of Cu doping on the mechanical and optical properties of zinc oxide nanowires synthesized by hydrothermal route. Robak E; Coy E; Kotkowiak M; Jurga S; Załęski K; Drozdowski H Nanotechnology; 2016 Apr; 27(17):175706. PubMed ID: 26987563 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. Wang Y; Zhang YY; Tang J; Wu H; Xu M; Peng Z; Gong XG; Zheng G ACS Nano; 2013 Oct; 7(10):9375-83. PubMed ID: 24047133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]