BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27610470)

  • 1. High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors electrodes by Al doping.
    Zheng X; Sun Y; Yan X; Sun X; Zhang G; Zhang Q; Jiang Y; Gao W; Zhang Y
    J Colloid Interface Sci; 2016 Dec; 484():155-161. PubMed ID: 27610470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes.
    Wang F; Seo JH; Li Z; Kvit AV; Ma Z; Wang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1288-93. PubMed ID: 24383705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires.
    Wang F; Seo JH; Bayerl D; Shi J; Mi H; Ma Z; Zhao D; Shuai Y; Zhou W; Wang X
    Nanotechnology; 2011 Jun; 22(22):225602. PubMed ID: 21454935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting.
    Yang X; Wolcott A; Wang G; Sobo A; Fitzmorris RC; Qian F; Zhang JZ; Li Y
    Nano Lett; 2009 Jun; 9(6):2331-6. PubMed ID: 19449878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties.
    He JH; Lao CS; Chen LJ; Davidovic D; Wang ZL
    J Am Chem Soc; 2005 Nov; 127(47):16376-7. PubMed ID: 16305207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unique core-shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach.
    Chebrolu VT; Balakrishnan B; Cho I; Bak JS; Kim HJ
    Dalton Trans; 2020 Oct; 49(41):14432-14444. PubMed ID: 33044469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Temperature Preparation of Ag-Doped ZnO Nanowire Arrays, DFT Study, and Application to Light-Emitting Diode.
    Pauporté T; Lupan O; Zhang J; Tugsuz T; Ciofini I; Labat F; Viana B
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11871-80. PubMed ID: 25990263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ge-doped ZnO nanowire arrays as cold field emitters with excellent performance.
    Liang Y
    Nanotechnology; 2019 Sep; 30(37):375603. PubMed ID: 31185459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires.
    Wang C; Wang Y; Zhang G; Peng C; Yang G
    Phys Chem Chem Phys; 2014 Feb; 16(8):3771-6. PubMed ID: 24430004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion-Driven Al-Doping of ZnO Nanorods and Stretchable Gas Sensors Made of Doped ZnO Nanorods/Ag Nanowires Bilayers.
    Namgung G; Ta QTH; Yang W; Noh JS
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1411-1419. PubMed ID: 30525384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrays of ZnO/AZO (Al-doped ZnO) nanocables: a higher open circuit voltage and remarkable improvement of efficiency for CdS-sensitized solar cells.
    Deng J; Wang M; Liu J; Song X; Yang Z
    J Colloid Interface Sci; 2014 Mar; 418():277-82. PubMed ID: 24461846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale solution-phase growth of Cu-doped ZnO nanowire networks.
    Xu C; Koo TW; Kim BS; Lee JH; Hwang SW; Whang D
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6062-6. PubMed ID: 22121658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Sn doping on the growth morphology and electrical properties of ZnO nanowires.
    Kim S; Na S; Jeon H; Kim S; Lee B; Yang J; Kim H; Lee HJ
    Nanotechnology; 2013 Feb; 24(6):065703. PubMed ID: 23340217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P-type nitrogen-doped ZnO nanostructures with controlled shape and doping level by facile microwave synthesis.
    Herring NP; Panchakarla LS; El-Shall MS
    Langmuir; 2014 Mar; 30(8):2230-40. PubMed ID: 24555702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synthesis and electrical characterization of Cu2O/Al:ZnO radial p-n junction nanowire arrays.
    Kuo CL; Wang RC; Huang JL; Liu CP; Wang CK; Chang SP; Chu WH; Wang CH; Tu CH
    Nanotechnology; 2009 Sep; 20(36):365603. PubMed ID: 19687549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ doping of ZnO nanowires using aerosol-assisted chemical vapour deposition.
    Pung SY; Choy KL; Hou X; Dinsdale K
    Nanotechnology; 2010 Aug; 21(34):345602. PubMed ID: 20671359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of highly uniform Mn/Co-codoped ZnO nanowires: optical, electrical, and magnetic properties.
    Li H; Huang Y; Zhang Q; Qiao Y; Gu Y; Liu J; Zhang Y
    Nanoscale; 2011 Feb; 3(2):654-60. PubMed ID: 21113544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors.
    Chen Y; Liu B; Liu Q; Wang J; Li Z; Jing X; Liu L
    Nanoscale; 2015 Oct; 7(37):15159-67. PubMed ID: 26257017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of Cu doping on the mechanical and optical properties of zinc oxide nanowires synthesized by hydrothermal route.
    Robak E; Coy E; Kotkowiak M; Jurga S; Załęski K; Drozdowski H
    Nanotechnology; 2016 Apr; 27(17):175706. PubMed ID: 26987563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance.
    Wang Y; Zhang YY; Tang J; Wu H; Xu M; Peng Z; Gong XG; Zheng G
    ACS Nano; 2013 Oct; 7(10):9375-83. PubMed ID: 24047133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.