These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27610864)

  • 21. Characterizing Charge Transfer at Water Ice Interfaces.
    Lee AJ; Rick SW
    J Phys Chem Lett; 2012 Nov; 3(21):3199-203. PubMed ID: 26296029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two types of quasi-liquid layers on ice crystals are formed kinetically.
    Asakawa H; Sazaki G; Nagashima K; Nakatsubo S; Furukawa Y
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):1749-53. PubMed ID: 26831089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A pinch of salt is all it takes: chemistry at the frozen water surface.
    Kahan TF; Wren SN; Donaldson DJ
    Acc Chem Res; 2014 May; 47(5):1587-94. PubMed ID: 24785086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface.
    Gladich I; Oswald A; Bowens N; Naatz S; Rowe P; Roeselova M; Neshyba S
    Phys Chem Chem Phys; 2015 Sep; 17(35):22947-58. PubMed ID: 26266625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water Mobility in the Interfacial Liquid Layer of Ice/Clay Nanocomposites.
    Li H; Mars J; Lohstroh W; Koza MM; Butt HJ; Mezger M
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7697-7702. PubMed ID: 33238050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.
    Lupi L; Kastelowitz N; Molinero V
    J Chem Phys; 2014 Nov; 141(18):18C508. PubMed ID: 25399173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ice friction: Role of non-uniform frictional heating and ice premelting.
    Persson BN
    J Chem Phys; 2015 Dec; 143(22):224701. PubMed ID: 26671390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free energy contributions and structural characterization of stacking disordered ices.
    Hudait A; Qiu S; Lupi L; Molinero V
    Phys Chem Chem Phys; 2016 Apr; 18(14):9544-53. PubMed ID: 26983558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core-shell particles.
    Chanda J; Ionov L; Kirillova A; Synytska A
    Soft Matter; 2015 Dec; 11(47):9126-34. PubMed ID: 26411650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure increases the ice-like order of water at hydrophobic interfaces.
    Hölzl C; Horinek D
    Phys Chem Chem Phys; 2018 Aug; 20(33):21257-21261. PubMed ID: 30087963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic model of quasiliquid formation on H2O ice: comparison with experiment.
    Henson BF; Voss LF; Wilson KR; Robinson JM
    J Chem Phys; 2005 Oct; 123(14):144707. PubMed ID: 16238416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Premelting of ice adsorbed on a rock surface.
    Esteso V; Carretero-Palacios S; MacDowell LG; Fiedler J; Parsons DF; Spallek F; Míguez H; Persson C; Buhmann SY; Brevik I; Boström M
    Phys Chem Chem Phys; 2020 May; 22(20):11362-11373. PubMed ID: 32373792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Edge premelting of two-dimensional ices.
    Qiu H; Zhao W; Zhou W; Guo W
    J Chem Phys; 2021 Jul; 155(4):044706. PubMed ID: 34340399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial premelting of ice in nano composite materials.
    Li H; Bier M; Mars J; Weiss H; Dippel AC; Gutowski O; Honkimäki V; Mezger M
    Phys Chem Chem Phys; 2019 Feb; 21(7):3734-3741. PubMed ID: 30462119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rounded Layering Transitions on the Surface of Ice.
    Llombart P; Noya EG; Sibley DN; Archer AJ; MacDowell LG
    Phys Rev Lett; 2020 Feb; 124(6):065702. PubMed ID: 32109130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.
    Liyana-Arachchi TP; Valsaraj KT; Hung FR
    J Phys Chem A; 2012 Mar; 116(10):2519-28. PubMed ID: 22353023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular simulation study of the adsorption of naphthalene and ozone on atmospheric air/ice interfaces.
    Liyana-Arachchi TP; Valsaraj KT; Hung FR
    J Phys Chem A; 2011 Aug; 115(33):9226-36. PubMed ID: 21770433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneous nucleation of ice on carbon surfaces.
    Lupi L; Hudait A; Molinero V
    J Am Chem Soc; 2014 Feb; 136(8):3156-64. PubMed ID: 24495074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anisotropy in geometrically rough structure of ice prismatic plane interface during growth: Development of a modified six-site model of H
    Nada H
    J Chem Phys; 2016 Dec; 145(24):244706. PubMed ID: 28049310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.